Category Archives: FACTS

Same problems in a different language

I spent a lot of time on trains last week.  I left Liverpool on Tuesday evening for Bristol and spent Wednesday at Airbus in Filton discussing the implementation of the technologies being developed in the EU Clean Sky 2 projects MOTIVATE and DIMES.  On Wednesday evening I travelled to Bracknell and on Thursday gave a seminar at Syngenta on model credibility in predictive toxicology before heading home to Liverpool.  But, on Friday I was on the train again, to Manchester this time, to listen to a group of my PhD students presenting their projects to their peers in our new Centre for Doctoral Training called Growing skills for Reliable Economic Energy from Nuclear, or GREEN.  The common thread, besides the train journeys, is the Fidelity And Credibility of Testing and Simulation (FACTS).  My research group is working on how we demonstrate the fidelity of predictions from models, how we establish trust in both predictions from computational models and measurements from experiments that are often also ‘models’ of the real world.  The issues are similar whether we are considering the structural performance of aircraft [as on Wednesday], the impact of agro-chemicals [as on Thursday], or the performance of fusion energy and the impact of a geological disposal site [as on Friday] (see ‘Hierarchical modelling in engineering and biology‘ on March 14th, 2018) .  The scientific and technical communities associated with each application talk a different language, in the sense that they use different technical jargon and acronyms; and they are surprised and interested to discover that similar problems are being tackled by communities that they rarely think about or encounter.

On the trustworthiness of multi-physics models

I stayed in Sheffield city centre a few weeks ago and walked past the standard measures in the photograph on my way to speak at a workshop.  In the past, when the cutlery and tool-making industry in Sheffield was focussed around small workshops, or little mesters, as they were known, these standards would have been used to check the tools being manufactured.  A few hundred years later, the range of standards in existence has extended far beyond the weights and measures where it started, and now includes standards for processes and artefacts as well as for measurements.  The process of validating computational models of engineering infrastructure is moving slowly towards establishing an internationally recognised standard [see two of my earliest posts: ‘Model validation‘ on September 18th, 2012 and ‘Setting standards‘ on January 29th, 2014].  We have guidelines that recommend approaches for different parts of the validation process [see ‘Setting standards‘ on January 29th, 2014]; however, many types of computational model present significant challenges when establishing their reliability [see ‘Spatial-temporal models of protein structures‘ on March 27th, 2019].  Under the auspices of the MOTIVATE project, we are gathering experts in Zurich on November 5th, 2019 to discuss the challenges of validating multi-physics models, establishing credibility and the future use of data from experiments.  It is the fourth in a series of workshops held previously in Shanghai, London and Munich.  For more information and to register follow this link. Come and join our discussions in one of my favourite cities where we will be following ‘In Einstein’s footprints‘ [posted on February 27th, 2019].

The MOTIVATE project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 754660.

Joining the dots

Six months ago, I wrote about ‘Finding DIMES’ as we kicked off a new EU-funded project to develop an integrated measurement system for identifying and tracking damage in aircraft structures.  We are already a quarter of the way through the project and we have a concept design for a modular measurement system based on commercial off-the-shelf components.  We started from the position of wanting our system to provide answers to four of the five questions that Farrar & Worden [1] posed for structural health monitoring systems in 2007; and, in addition to provide information to answer the fifth question.  The five questions are: Is there damage? Where is the damage? What kind of damage is present? How severe is the damage?  And, how much useful life remains?

During the last six months our problem definition has evolved through discussions with our EU Topic Manager, Airbus, to four objectives, namely: to quantify applied loads; to provide condition-led/predictive maintenance; to find indications of damage in composites of 6mm diameter or greater and in metal to detect cracks longer than 1mm; and to provide a digital solution.  At first glance there may not appear to be much connection between the initial problem definition and the current version; but actually, they are not very far apart although the current version is more specific.  This evolution from the idealised vision to the practical goal is normal in engineering projects.

We plan to use point sensors, such as resistance strain gauges or fibre Bragg gratings, to quantify applied loads and track usage history; while imaging sensors will allow us to measure strain fields that will provide information about the changing condition of the structure using the image decomposition techniques developed in previous EU-funded projects: ADVISE, VANESSA (see ‘Setting standards‘ on January 29th, 2014) and INSTRUCTIVE.  We will use these techniques to identify and track cracks in metals [2]; while for composites, we will apply a technique developed through an EPSRC iCASE award from 2012-16 on ‘Full-field strain-based methods for NDT & structural integrity measurement’ [3].

I gave a short briefing on DIMES to a group of Airbus engineers last month and it was good see some excitement in the room about the direction of the project.  And, it felt good to be highlighting how we are building on earlier investments in research by joining the dots to create a deployable measurement system and delivering the complete picture in terms of information about the condition of the structure.

Image: Infra red photograph of DIMES meeting in Ulm.

References

  1. Farrar & Worden, An introduction to structural health monitoring, Phil. Trans. R Soc A, 365:303-315, 2007
  2. Middleton, C.A., Gaio, A., Greene, R.J. & Patterson, E.A., Towards automated tracking of initiation and propagation of cracks in aluminium alloy coupons using thermoelastic stress analysis, Nondestructive Evaluation, 38:18, 2019.
  3. Christian, W.J.R., DiazDelaO, F.A. & Patterson, E.A., Strain-based damage assessment of accurate residual strength prediction of impacted composite laminates, Composites Structures, 184:1215-1223, 2018.

The INSTRUCTIVE and DIMES projects have received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreements No. 685777 and No. 820951 respectively.

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

Crack tip plasticity in reactor steels

Amplitude of temperature in steel due to a cyclic load with a crack growing from left to right along the horizontal centre line with the stress concentration at its tip exhibiting the peak values. The wedge shapes in the left corners are part of the system.

At this time of year the flow into my inbox is augmented daily by prospective PhD students sending me long emails describing how their skills, qualifications and interests perfectly match the needs of my research group, or sometimes someone else’s group if they have not been careful in setting up their mass mailing.  At the moment, I have four PhD projects for which I am looking for outstanding students; so, because it will help prospective students and might interest my other readers but also because I am short of ideas for the blog, I plan to describe one project per week for the next month.

The first project is about the effect of hydrogen on crack tip plasticity in reactor steels.  Fatigue cracks grow in steels by coalescing imperfections in the microstructure of the material until small voids are formed in areas of high stress.  When these voids connect together a crack is formed.  Repeated loading and unloading of the material provides the energy to move the imperfections, known as dislocations, and geometric features in structures are stress concentrators which focus this energy causing cracks to be formed in their vicinity.  The movement of dislocations causes permanent, or plastic deformation of the material.  The sharp geometry of a crack tip becomes a stress concentrator creating a plastic zone in which dislocations pile up and voids form allowing the crack to extend [see post on ‘Alan Arnold Griffith‘ on April 26th, 2017].  It is possible to detect the thermal energy released during plastic deformation using a technique known as thermoelastic stress analysis [see ‘Counting photons to measure stress‘ on November 18th 2015] as well as to measure the stress field associated with the propagating crack [1].  One of my current PhD students has been using this technique to investigate the effect of irradiation damage on the growth of cracks in stainless steel used in nuclear reactors.  We use an ion accelerator at the Dalton Cumbrian Facility to introduce radiation damage into specimens the size of a postage stamp and afterwards apply cyclic loads and watch the fatigue crack grow using our sensitive infra-red cameras.  We have found that the irradiation reduced the rate of crack growth and we will be publishing a paper on it shortly [and a PhD thesis].  In the new project, our industrial sponsors want us to explore the effect of hydrogen on crack growth in irradiated steel, because the presence of hydrogen is known to accelerate fatigue crack growth [2] which is believe to happen as a result of hydrogen atoms disrupting the formation of dislocations at the microscale and localising plasticity at crack tip on the mesoscale.  However, these ideas have not been demonstrated in experiments, so we plan to do this using thermoelastic stress analysis and to investigate the combined influence of hydrogen and irradiation by developing a process for pre-charging the steel specimens with hydrogen using an electrolytic cell and irradiating them using the ion accelerator.  Both hydrogen and radiation are present in a nuclear reactor and hence the results will be relevant to predicting the safe working life of nuclear reactors.

The PhD project is fully-funded for UK and EU citizens as part of a Centre for Doctoral Training and will involve a year of specialist training followed by three years of research.  For more information following this link.

References:

  1. Yang, Y., Crimp, M., Tomlinson, R.A., Patterson, E.A., 2012, Quantitative measurement of plastic strain field at a fatigue crack tip, Proc. R. Soc. A., 468(2144):2399-2415.
  2. Matsunaga, H., Takakuwa, O., Yamabe, J., & Matsuoka, S., 2017, Hydrogen-enhanced fatigue crack growth in steels and its frequency dependence. Phil. Trans. R. Soc. A, 375(2098), 20160412