Tag Archives: knowledge

Digital twins could put at risk what it means to be human

Detail from abstract by Zahrah ReshI have written in the past about my research on the development and use of digital twins.  A digital twin is a functional representation in a virtual world of a real world entity that is continually updated with data from the real world [see ‘Fourth industrial revolution’ on July 4th, 2018 and also a short video at https://www.youtube.com/watch?v=iVS-AuSjpOQ].  I am working with others on developing an integrated digital nuclear environment from which digital twins of individual power stations could be spawned in parallel with the manufacture of their physical counterparts [see ‘Enabling or disruptive technology for nuclear engineering’ on January 1st, 2015 and ‘Digitally-enabled regulatory environment for fusion power-plants’ on March 20th, 2019].  A couple of months ago, I wrote about the difficulty of capturing tacit knowledge in digital twins, which is knowledge that is generally not expressed but is retained in the minds of experts and is often essential to developing and operating complex engineering systems [see ‘Tacit hurdle to digital twins’ on August 26th, 2020].  The concept of tapping into someone’s mind to extract tacit knowledge brings us close to thinking about human digital twins which so far have been restricted to computational models of various parts of human anatomy and physiology.  The idea of a digital twin of someone’s mind raises a myriad of philosophical and ethical issues.  Whilst the purpose of a digital twin of the mind of an operator of a complex system might be to better predict and understand human-machine interactions, the opportunity to use the digital twin to advance techniques of personalisation will likely be too tempting to ignore.  Personalisation is the tailoring of the digital world to respond to our personal needs, for instance using predictive algorithms to recommend what book you should read next or to suggest purchases to you.  At the moment, personalisation is driven by data derived from the tracks you make in the digital world as you surf the internet, watch videos and make purchases.  However, in the future, those predictive algorithms could be based on reading your mind, or at least its digital twin.  We worry about loss of privacy at the moment, by which we probably mean the collation of vast amounts of data about our lives by unaccountable organisations, and it worries us because of the potential for manipulation of our lives without us being aware it is happening.  Our free will is endangered by such manipulation but it might be lost entirely to a digital twin of our mind.  To quote the philosopher Michael Lynch, you would be handing over ‘privileged access to your mental states’ and to some extent you would no longer be a unique being.  We are long way from possessing the technology to realise a digital twin of human mind but the possibility is on the horizon.

Source: Richard Waters, They’re watching you, FT Weekend, 24/25 October 2020.

Image: Extract from abstract by Zahrah Resh.

Lacking creativity

detail tl from abstract painting by Zahrah RI feel that I am moving to the next level of experience with online meetings but I am unsure that it will address the slow down in productivity and a loss of creativity being reported by most leaders of research groups to whom I have spoken recently.  About a month ago, we organised an ‘Away Day’ for all staff in the School of Engineering with plenary presentations, breakout groups and a Q&A session.  Of course, the restrictions induced by the pandemic meant that we were only ‘away’ in the sense of putting aside our usual work routine and it only lasted for half a day because we felt a whole day in an online conference would be counter productive; nevertheless, the feedback was positive from the slightly more than one hundred staff who participated.  On a smaller scale, we have experimented with randomly allocating members of my research team to breakout sessions during research group meetings in an attempt to give everyone a chance to contribute and to stimulate those serendipitous conversations that lead to breakthroughs, or least alternative solutions to explore.  We have also invited external speakers to join our group meetings – last month we had a talk from a researcher in Canada.  We are trying to recreate the environment in which new ideas bubble to the surface during casual conversations at conferences or visits to laboratories; however, I doubt we are succeeding.  The importance of those conversations to creativity and innovation in science is highlighted by the story of how Emmanuelle Charpentier and Jennifer Doudna met for the first time at a conference in Puerto Rico.   While wandering around San Juan on a warm Caribbean evening in 2011 discussing the way bacteria protect themselves against viruses by chopping up the DNA of the virus, they realised that it could be turned into molecular scissors for cutting and editing the genes of any living creature.  They went home after the conference to their labs in Umea University, Sweden and UC Berkeley respectively and collaborated round the clock to implement their idea for which they won this year’s Nobel Prize for Chemistry.  Maybe the story is apocryphal; however, based on my own experience of conversations on the fringes of scientific meetings, they are more productive than the meeting itself and their loss is a significant casualty of the COVID-19 pandemic.  There are people who point to the reduction in the carbon footprint of science research caused by the cancellation of conferences and who argue that, in order to contribute to UN Goals for Sustainable Development, we should not return to gatherings of researchers in locations around the world.  I agree that we should consider our carbon footprint more carefully when once again we can travel to scientific meetings; however, I think the innovations required to achieve the UN Goals will emerge very slowly, or perhaps not all, if researchers are limited to meeting online only.


Clive Cookson, A dynamic Nobel duo with natural chemistry, FT Weekend, 10/11 October 2020.

Image: Extract from abstract by Zahrah Resh.

Democratizing education

One motivation for developing Massive Open Online Courses (MOOC) has been to democratize education by giving everyone access to knowledge often presented by leading professors.  It was certainly one reason why I developed and delivered two MOOCs on ‘Energy: Thermodynamics in Everyday Life‘ in 2015/16 and ‘Understanding Super Structures’ in 2017.  The workload involved in supporting thousands of learners around the global is not insignificant and was unsustainable for me so I gave up after running them for a couple of years despite the intangible rewards [see ‘Knowledge spheres‘ on March 9th, 2016 and ‘A liberal engineering education‘ on March 2nd, 2016] . However, I incorporated the MOOC on energy into my undergraduate module on thermodynamics to create a blended approach to learning [see ‘Blended learning environments‘ on November 14th, 2018].  This paid dividends for me when the pandemic forced our campus into lock-down in the middle of semester last March and I already had a large number of bite-sized activities available online for our students.  Most universities have had to move their teaching online due to the pandemic; but not all students are able to access the online materials as easily others.  The Booker shortlisted novelist, Tsitsi Dangarembga has reported how one of her neighbours has struggled to access resources recommended to him by lecturers at his college in Bulawayo due to the cost and unreliability of Wi-Fi in Zimbabwe.  She tried to help him by registering him for her hotspot package but, in common with many students, he studies mainly at night when hotspot venues are closed.  The maps shows the global distribution of learners in one of the Energy MOOCs that I delivered and you can see the holes in Africa and South America which, at the time, we thought might be due to a lack of computer and internet access and Dangarembga’s account seems to support this hypothesis.  So, we designed our second MOOC on Structures to be accessible via a mobile phone by using fewer videos and more audio clips that could be quickly downloaded and listened to offline.  Unfortunately, we ran out of resources to complete the research on whether it was accessed more successfully in those grey areas on the map; however, the audio recordings were unpopular with the more traditional audience in the USA and UK who gave us immediate and vocal feedback!


Tsitsi Dangarembga, Protest and prizes, FT Weekend, 26/27 September 2020.

Patterson EA, Using everyday engineering examples to engage learners on a massive open online courseInternational Journal of Mechanical Engineering Education, p.0306419018818551


Forecasts and chimpanzees throwing darts

During the coronavirus pandemic, politicians have taken to telling us that their decisions are based on the advice of their experts while the news media have bombarded us with predictions from experts.  Perhaps not unexpectedly, with the benefit of hindsight, many of these decisions and predictions appear to be have been ill-advised or inaccurate which is likely to lead to a loss of trust in both politicians and experts.  However, this is unsurprising and the reliability of experts, particularly those willing to make public pronouncements, is well-known to be dubious.  Professor Philip E. Tetlock of the University of Pennsylvania has assessed the accuracy of forecasts made by purported experts over two decades and found that they were little better than a chimpanzee throwing darts.  However, the more well-known experts seemed to be worse at forecasting [Tetlock & Gardner, 2016].  In other words, we should assign less credibility to those experts whose advice is more frequently sought by politicians or quoted in the media.  Tetlock’s research has found that the best forecasters are better at inductive reasoning, pattern detection, cognitive flexibility and open-mindedness [Mellers et al, 2015]. People with these attributes will tend not to express unambiguous opinions but instead will attempt to balance all factors in reaching a view that embraces many uncertainties.  Politicians and the media believe that we want to hear a simple message unadorned by the complications of describing reality; and, hence they avoid the best forecasters and prefer those that provide the clear but usually inaccurate message.  Perhaps that’s why engineers are rarely interviewed by the media or quoted in the press because they tend to be good at inductive reasoning, pattern detection, cognitive flexibility and are open-minded [see ‘Einstein and public engagement‘ on August 8th, 2018].  Of course, this was well-known to the Chinese philosopher, Lao Tzu who is reported to have said: ‘Those who have knowledge, don’t predict. Those who predict, don’t have knowledge.’


Mellers, B., Stone, E., Atanasov, P., Rohrbaugh, N., Metz, S.E., Ungar, L., Bishop, M.M., Horowitz, M., Merkle, E. and Tetlock, P., 2015. The psychology of intelligence analysis: Drivers of prediction accuracy in world politics. Journal of experimental psychology: applied, 21(1):1-14.

Tetlock, P.E. and Gardner, D., 2016. Superforecasting: The art and science of prediction. London: Penguin Random House.