Tag Archives: knowledge

Walking and reading during a staycation

I am on vacation this week though, due to the restrictions on our movement imposed to prevent the spread of the coronavirus, it will a be staycation in our house.  We usually go to the Lake District at this time of year to walk and read; so, I might make another virtual expedition [see: ‘Virtual ascent of Moel Famau’ on April 8th, 2020], perhaps to climb Stickle Pike and Great Stickle this time.  I was asked recently about books I would recommend prospective science and engineering students to read in preparation for to going to university.  It is not the first time that I have been asked the question.  This time I thought I should respond via this blog since the disruption brought about by the pandemic probably means that many prospective students will have more time and less preparation prior to starting their university course.  So, here are six books that are all available as ebooks, and might be of interest to anyone who is staying home to counter the spread of coronavirus and has time to fill:

[1] It is hard to find good novels either written by an engineer or about engineering [see ‘Engineering novelist‘ on August 5th, 2015]; however, Nevil Shute’s novel ‘Trustee from the toolroom‘ [Penguin Books, 1960] satisfies all of these criteria.

I have more than 40 years experience of engineering science so I am not the best person to ask about books that will appeal to young people just starting their journey in the field; however two books that have been popular recently are: [2] ‘Storm in a teacup: the physics of everyday life‘ by Helen Czerski [Penguin Books, 2016] and [3] ‘Think like an engineer‘ by Guru Madhavan [One World Publications, 2016]

Regular readers of this blog might have spotted some of my favourite science books in the lists of sources at the end of posts. Perhaps my top three at the moment are:

[4] Max Tegmark, Our Mathematical Universe, Penguin Books Ltd, 2014. [see: ‘Converting wealth into knowledge and back to wealth‘ on January 6th, 2016; ‘Trees are made of air‘ on April 1st, 2015; ‘Is the Earth a closed system? Does it matter?‘ on December 10th, 2014 & ‘Tidal energy‘ on September 17th, 2014]

[5] Susan Greenfield, A Day in the Life of the Brain, London: Allen Lane, 2016 [see: ‘Digital hive mind‘ on November 30th, 2016; ‘Gone walking‘ on April 19th, 2017 & ‘Walking through exams‘ on May 17th, 2017].

[6] Carlo Rovelli, The Order of Time, Penguin, 2019 [see: ‘We inhabit time as fish inhabit water’ on July 24th, 2019 and ‘Only the name of the airport changes‘ on June 12th, 2019].

Of course, I should not omit the books that I ask students to read for my own first year module in thermodynamics:

Peter Atkins, A very short introduction to thermodynamics, Oxford: OUP, 2010.

Manuel Delanda ‘Philosophy and Simulation: The Emergence of Synthetic Reason‘, London: Continuum Int. Pub. Group, 2011 [see: ‘More violent storms‘ on March 1st, 2017; ‘Emergent properties‘ on September 16th, 2015 & ‘Emerging inequality‘ on March 5th, 2014].

 

 

 

Citizens of the world

Last week in Liverpool, we hosted a series of symposia for participants in a dual PhD programme involving the University of Liverpool and National Tsing Hua University, in Taiwan, that has been operating for nearly a decade.  On the first day, we brought together about dozen staff from each university, who had not met before, and asked them to present overviews of their research and explore possible collaborations using as a theme: UN Sustainable Development Goal No.11: Sustainable Cities and Communities.  The expertise of the group included biology, computer science, chemistry, economics, engineering, materials science and physics; so, we had wide-ranging discussions.  On the second and third day, we connected a classroom on each campus using a video conferencing system and the two dozen PhD students in the dual programme presented updates on their research from whichever campus they are currently resident.  Each student has a supervisor in each university and divides their time between the two universities exploiting the expertise and facilities in the two institutions.

The range of topics covered in the student presentations was probably even wider than on the first day; extending from deep neural networks, through nuclear reactor technology, battery design and three-dimensional cell culturing to policy impacts on households.  One student spoke about the beauty of mathematical equations she is working on that describe the propagation of waves in lattice structures; while, another told us about his investigation of the causes of declining fertility rates across the world.  Data from the UN DESA Population Division show that live births per woman in the Americas & Europe have already fallen below the 2.1 required to sustain the population, while it is projected to fall below this level in south-east Asia within the next five years and in the world by 2060.  This made me think that perhaps the Gaia principle, proposed by James Lovelock, is operating and that human population is self-regulating as it interacts with constraints imposed by the Earth though perhaps not in a fashion originally envisaged.

 

Engineering correspondents needed

Society’s perception  of scientists and engineers is not well-balanced; scientists tend to get the headlines when they make new discoveries while engineers are only in the headlines when things go wrong.  Even worse, when I was a student, the successes of the NASA’s space shuttle were usually reported as scientific achievements while its problems were engineering failures; when the whole programme was an enormous feat of engineering!  Perhaps this is because news organisations tend to have science correspondents and editors but no engineering correspondents.  When you search for engineering journalism jobs most of the results relate to roles associated with the technology of journalism; whereas a search for science journalism jobs results in dozens of vacancies for science writers, correspondents and editors.  The lack of engineering correspondents has been evident in the UK during the past week in reporting about the potential bursting of the dam at Toddbrock Reservoir and flooding of the town of Whaley Bridge in Derbyshire UK.  A 188 year old dam has been damaged by the turbulent flow of water over its spillway following unprecedented levels of rainfall (e.g. https://www.bbc.co.uk/news/uk-england-derbyshire-49222956). There is little discussion of the significant achievement of the Victorian engineers who designed and built a dam in the 1831 that has lasted 188 years or that climate change is causing shifts in weather patterns which have altered the design specifications for engineering infrastructure including dams, bridges and sea defences.  We need more journalists to write about engineering and preferable more journalists who have been educated as engineers particularly as society starts to face the potential existential threat caused by climate change and over-population.

For more on the nature of engineering, and its relationship to science, see ‘Making things happen‘ on September 26th, 2018; ‘Engineering is all about ingenuity‘ on September 14th, 2016 and ‘Life takes engineering‘ on April 22nd 2015.

And on the communication skills of engineers: ‘Poetasting engineers‘ on March 4th, 2015 and ‘Einstein and public engagement‘ on August 8th, 2018.

Meta-knowledge: knowledge about knowledge

As engineers, we like to draw simple diagrams of the systems that we are attempting to analyse because most of us are pictorial problem-solvers and recording the key elements of a problem in a sketch helps us to identify the important issues and select an appropriate solution procedure [see ‘Meta-representational competence’ on May 13th, 2015].  Of course, these simple representations can be misleading if we omit parameters or features that dominate the behaviour of the system; so, there is considerable skill in idealising a system so that the analysis is tractable, i.e. can be solved.  Students find it especially difficult to acquire these skills [see ‘Learning problem-solving skills‘ on October 24th, 2018] and many appear to avoid drawing a meaningful sketch even when examinations marks are allocated to it [see ‘Depressed by exams‘ on January 31st, 2018].  Of course, in thermodynamics it is complicated by the entropy of the system being reduced when we omit parameters in order to idealise the system; because with fewer parameters to describe the system there are fewer microstates in which the system can exist and, hence according to Boltzmann, the entropy will be lower [see ‘Entropy on the brain‘ on November 29th, 2017].  Perhaps this is the inverse of realising that we understand less as we know more.  In other words, as our knowledge grows it reveals to us that there is more to know and understand than we can ever hope to comprehend [see ‘Expanding universe‘ on February 7th, 2018]. Is that the second law of thermodynamics at work again, creating more disorder to counter the small amount of order achieved in your brain?

Image: Sketch made during an example class