Tag Archives: uncertainty

Credible predictions for regulatory decision-making

detail from abstract by Zahrah ReshRegulators are charged with ensuring that manufactured products, from aircraft and nuclear power stations to cosmetics and vaccines, are safe.  The general public seeks certainty that these devices and the materials and chemicals they are made from will not harm them or the environment.  Technologists that design and manufacture these products know that absolute certainty is unattainable and near-certainty in unaffordable.  Hence, they attempt to deliver the service or product that society desires while ensuring that the risks are As Low As Reasonably Practical (ALARP).  The role of regulators is to independently assess the risks, make a judgment on their acceptability and thus decide whether the operation of a power station or distribution of a vaccine can go ahead.  These are difficult decisions with huge potential consequences – just think of the more than three hundred people killed in the two crashes of Boeing 737 Max airplanes or the 10,000 or so people affected by birth defects caused by the drug thalidomide.  Evidence presented to support applications for regulatory approval is largely based on physical tests, for example fatigue tests on an aircraft structure or toxicological tests using animals.  In some cases the physical tests might not be entirely representative of the real-life situation which can make it difficult to make decisions using the data, for instance a ground test on an airplane is not the same as a flight test and in many respects the animals used in toxicity testing are physiologically different to humans.  In addition, physical tests are expensive and time-consuming which both drives up the costs of seeking regulatory approval and slows down the translation of new innovative products to the market.  The almost ubiquitous use of computer-based simulations to support the research, development and design of manufactured products inevitably leads to their use in supporting regulatory applications.  This creates challenges for regulators who must judge the trustworthiness of predictions from these simulations.  [see ‘Fake facts & untrustworthy predictions‘ on December 4th, 2019]. It is standard practice for modellers to demonstrate the validity of their models; however, validation does not automatically lead to acceptance of predictions by decision-makers.  Acceptance is more closely related to scientific credibility.  I have been working across a number of disciplines on the scientific credibility of models including in engineering where multi-physics phenomena are important, such as hypersonic flight and fusion energy [see ‘Thought leadership in fusion energy‘ on October 9th, 2019], and in computational biology and toxicology [see ‘Hierarchical modelling in engineering and biology‘ on March 14th, 2018]. Working together with my collaborators in these disciplines, we have developed a common set of factors which underpin scientific credibility that are based on principles drawn from the literature on the philosophy of science and are designed to be both discipline-independent and method-agnostic [Patterson & Whelan, 2019; Patterson et al, 2021]. We hope that our cross-disciplinary approach will break down the subject-silos that have become established as different scientific communities have developed their own frameworks for validating models.  As mentioned above, the process of validation tends to be undertaken by model developers and, in some sense, belongs to them; whereas, credibility is not exclusive to the developer but is a trust that needs to be shared with a decision-maker who seeks to use the predictions to inform their decision [see ‘Credibility is in the eye of the beholder‘ on April 20th, 2016].  Trust requires a common knowledge base and understanding that is usually built through interactions.  We hope the credibility factors will provide a framework for these interactions as well as a structure for building a portfolio of evidence that demonstrates the reliability of a model. 


Patterson EA & Whelan MP, On the validation of variable fidelity multi-physics simulations, J. Sound & Vibration, 448:247-258, 2019.

Patterson EA, Whelan MP & Worth A, The role of validation in establishing the scientific credibility of predictive toxicology approaches intended for regulatory application, Computational Toxicology, 17: 100144, 2021.

Image: Extract from abstract by Zahrah Resh.

Forecasts and chimpanzees throwing darts

During the coronavirus pandemic, politicians have taken to telling us that their decisions are based on the advice of their experts while the news media have bombarded us with predictions from experts.  Perhaps not unexpectedly, with the benefit of hindsight, many of these decisions and predictions appear to be have been ill-advised or inaccurate which is likely to lead to a loss of trust in both politicians and experts.  However, this is unsurprising and the reliability of experts, particularly those willing to make public pronouncements, is well-known to be dubious.  Professor Philip E. Tetlock of the University of Pennsylvania has assessed the accuracy of forecasts made by purported experts over two decades and found that they were little better than a chimpanzee throwing darts.  However, the more well-known experts seemed to be worse at forecasting [Tetlock & Gardner, 2016].  In other words, we should assign less credibility to those experts whose advice is more frequently sought by politicians or quoted in the media.  Tetlock’s research has found that the best forecasters are better at inductive reasoning, pattern detection, cognitive flexibility and open-mindedness [Mellers et al, 2015]. People with these attributes will tend not to express unambiguous opinions but instead will attempt to balance all factors in reaching a view that embraces many uncertainties.  Politicians and the media believe that we want to hear a simple message unadorned by the complications of describing reality; and, hence they avoid the best forecasters and prefer those that provide the clear but usually inaccurate message.  Perhaps that’s why engineers are rarely interviewed by the media or quoted in the press because they tend to be good at inductive reasoning, pattern detection, cognitive flexibility and are open-minded [see ‘Einstein and public engagement‘ on August 8th, 2018].  Of course, this was well-known to the Chinese philosopher, Lao Tzu who is reported to have said: ‘Those who have knowledge, don’t predict. Those who predict, don’t have knowledge.’


Mellers, B., Stone, E., Atanasov, P., Rohrbaugh, N., Metz, S.E., Ungar, L., Bishop, M.M., Horowitz, M., Merkle, E. and Tetlock, P., 2015. The psychology of intelligence analysis: Drivers of prediction accuracy in world politics. Journal of experimental psychology: applied, 21(1):1-14.

Tetlock, P.E. and Gardner, D., 2016. Superforecasting: The art and science of prediction. London: Penguin Random House.

Where is AI on the hype curve?

I suspect that artificial intelligence is somewhere near the top of the ‘Hype Curve’ [see ‘Hype cycle’ on September 23rd, 2015].  At the beginning of the year, I read Max Tegmark’s book, ‘Life 3.0 – being a human in the age of artificial intelligence’ in which he discusses the prospects for artificial general intelligence and its likely impact on life for humans.  Artificial intelligence means non-biological intelligence and artificial general intelligence is the ability to accomplish any cognitive task at least as well as humans.  Predictions vary about when we might develop artificial general intelligence but developments in machine learning and robotics have energised people in both science and the arts.  Machine learning consists of algorithms that use training data to build a mathematical model and make predictions or decisions without being explicitly programmed for the task.  Three of the books that I read while on vacation last month featured or discussed artificial intelligence which stimulated my opening remark about its position on the hype curve.  Jeanette Winterson in her novel, ‘Frankissstein‘ foresees a world in which humanoid robots can be bought by mail order; while Ian McEwan in his novel, ‘Machines Like Me‘, goes back to the early 1980s and describes a world in which robots with a level of consciousness close to or equal to humans are just being introduced to the market the place.  However, John Kay and Mervyn King in their recently published book, ‘Radical Uncertainty – decision-making beyond numbers‘, suggest that artificial intelligence will only ever enhance rather replace human intelligence because it will not be able to handle non-stationary ill-defined problems, i.e. problems for which there no objectively correct solution and that change with time.  I think I am with Kay & King and that we will shortly slide down into the trough of the hype curve before we start to see the true potential of artificial general intelligence implemented in robots.

The picture shows our holiday bookshelf.

The blind leading the blind

Three years after it started, the MOTIVATE project has come to an end [see ‘Getting smarter’ on June 21st, 2017].  The focus of the project has been about improving the quality of validation for predictions of structural behaviour in aircraft using fewer, better physical tests.  We have developed an enhanced flowchart for model validation [see ‘Spontaneously MOTIVATEd’ on June 27th, 2018], a method for quantifying uncertainty in measurements of deformation in an industrial environment [see ‘Industrial uncertainty’ on December 12th, 2018] and a toolbox for quantifying the extent to which predictions from computational models represent measurements made in the real-world [see ‘Alleviating industrial uncertainty’ on May 13th, 2020].  In the last phase of the project, we demonstrated all of these innovations on the fuselage nose section of an aircraft.  The region of interest was the fuselage skin behind the cockpit window for which the out-of-plane displacements resulting from an internal pressurisation load were predicted using a finite element model [see ‘Did cubism inspire engineering analysis?’ on January 25th, 2017].  The computational model was provided by Airbus and is shown on the left in the top graphic with the predictions for the region of interest on the right.  We used a stereoscopic imaging system  to record images of a speckle pattern on the fuselage before and after pressurization; and from these images, we evaluated the out-of-plane displacements using digital image correlation (DIC) [see ‘256 shades of grey‘ on January 22, 2014 for a brief explanation of DIC].  The bottom graphic shows the measurements being made with assistance from an Airbus contractor, Strain Solutions Limited.  We compared the predictions quantitatively against the measurements in a double-blind process which meant that the modellers and experimenters had no access to one another’s results.  The predictions were made by one MOTIVATE partner, Athena Research Centre; the measurements were made by another partner, Dantec Dynamics GmbH supported by Strain Solutions Limited; and the quantitative comparison was made by the project coordinator, the University of Liverpool.  We found that the level of agreement between the predictions and measurements changed with the level of pressurisation; however, the main outcome was the demonstration that it was possible to perform a double-blind validation process to quantify the extent to which the predictions represented the real-world behaviour for a full-scale aerospace structure.

The content of this post is taken from a paper that was to be given at a conference later this summer; however, the conference has been postponed due to the pandemic.  The details of the paper are: Patterson EA, Diamantakos I, Dvurecenska K, Greene RJ, Hack E, Lampeas G, Lomnitz M & Siebert T, Application of a model validation protocol to an aircraft cockpit panel, submitted to the International Conference on Advances in Experimental Mechanics to be held in Oxford in September 2021.  I would like to thank the authors for permission to write about the results in this post and Linden Harris of Airbus SAS for enabling the study and to him and Eszter Szigeti for providing technical advice.

For more on the validation flowchart see: Hack E, Burguete R, Dvurecenska K, Lampeas G, Patterson E, Siebert T & Szigeti, Steps towards industrial validation experiments, In Multidisciplinary Digital Publishing Institute Proceedings (Vol. 2, No. 8, p. 391) https://www.mdpi.com/2504-3900/2/8/391

For more posts on the MOTIVATE project: https://realizeengineering.blog/category/myresearch/motivate-project/

The MOTIVATE project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 754660 and the Swiss State Secretariat for Education, Research and Innovation under contract number 17.00064.

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.