Tag Archives: strain

Potential dynamic buckling in hypersonic vehicle skin

The skin of an aircraft is supported on the inside by a network, or mesh, of ribs and stringers running approximately at right angles to one another; so that the skin is effectively a series of rectangular plates supported around their edges.   In hypersonic flight, above five times the speed of sound, these rectangular plates are subject to vibration and to high temperatures that vary spatially and with time.  The combined vibratory and thermal loading causes the plates to buckle out of plane which has two possible detrimental consequences: first, it causes the formation of fatigue cracks leading to catastrophic failure; and, second, it might influence the formation of the boundary layer in the flow over the skin of the aircraft and affect the aerodynamics of the aircraft.  In my laboratory, we have built a test-rig that allows us to subject rectangular plates to random mechanical vibrations up to 1000Hz and, at the same time, to temperature distributions upto 1000K that vary in time and space.  Earlier this year, we published an article in which we showed, by experiment, that an edge-reinforced rectangular plate behaved as a dynamic system in response to thermal loading.  In other words, when a constant temperature distribution is applied, the shape of the plate varies with time until an equilibrium state is achieved.  In addition, we found that the post-buckled shape of the plate is not proportional to the energy supplied but dependent on the in-plane temperature distribution.  Probably, both of these observed behaviours are a result of differential thermal expansion of the plate and its reinforcements.

The image shows point-wise temperature and displacement measurements (centre) at the centre and edge of a reinforced plate (top) subject to a localised strip of heating over time as shown by the temperature distributions (bottom).

This is the fourth in a series of posts on recent work published by my research group.  The others are: ‘Salt increases nanoparticle diffusion‘ on April 22nd, 2020; ‘Spatio-temporal damage maps for composite materials‘ on May 6th, 2020; and, ‘Thinking out of the box leads to digital image correlation through space‘ on June 24th, 2020.


Santos Silva AC, Lambros J, Garner DM & Patterson EA, Dynamic response of a thermally stressed plate with reinforced edges, Experimental Mechanics, 60:81-92, 2020.

Condition-monitoring using infrared imaging

If you have travelled in Asia then you will probably have experienced having your health monitored by infrared cameras as you disembarked from your flight.  It has been common practice in many Asian countries since long before the COVID-19 pandemic and perhaps will become more usual elsewhere as a means of easily identifying people with symptoms of a fever that raises their body temperature.  Since, research has shown that infrared thermometers are slightly more responsive as well as quicker and easier to use than other types of skin surface thermometers [1].  In my research group, we have been using infrared cameras for many years to monitor the condition of engineering structures by evaluating the distribution of load or stress in them [see ‘Counting photons to measure stress‘ on November 18th, 2015 and  ‘Insidious damage‘ on December 2nd, 2015].  In the DIMES project, we have implemented a low-cost sensor system that integrates infrared and visible images with information about applied loads from point sensors, which allows the identification of initiation and tracking of damage in aircraft structures [2].  I reported in December 2019 [see ‘When seeing nothing is a success‘] that we were installing prototype systems in a test-bench at Empa.  Although the restrictions imposed by the pandemic have halted our tests, we were lucky to obtain data from our sensors during the propagation of damage in the section of wing at Empa before lockdown.  This is a landmark in our project and now we are preparing to install our system in test structures at Airbus once the pandemic restrictions are relaxed sufficiently.  Of course, we will also be able to use our system to monitor the health of the personnel involved in the test (see the top image of one of my research team) as well as the health of the structure being tested – the hardware is the same, it’s just the data processing that is different.

The image is a composite showing images from a visible camera (left) and processed data from infrared camera overlaid on the same visible image (right) from inside a wing box during a test at Empa with a crack extending from left to right with its tip surrounded by the red area in the right image.  Each nut in the image is about 20 mm in diameter and a constant amplitude load at 1.25 Hz was being applied causing a wing tip displacement of 80 mm +/- 15 mm.

The University of Liverpool is the coordinator of the DIMES project and the other partners are Empa, Dantec Dynamics GmbH and Strain Solutions Ltd.

The DIMES project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 820951.


The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.


[1] Burnham, R.S., McKinley, R.S. and Vincent, D.D., 2006. Three types of skin-surface thermometers: a comparison of reliability, validity, and responsiveness. American journal of physical medicine & rehabilitation, 85(7), pp.553-558.

[2] Middleton, C.A., Gaio, A., Greene, R.J. and Patterson, E.A., 2019. Towards automated tracking of initiation and propagation of cracks in aluminium alloy coupons using thermoelastic stress analysis. Journal of Nondestructive Evaluation, 38(1), p.18.

The blind leading the blind

Three years after it started, the MOTIVATE project has come to an end [see ‘Getting smarter’ on June 21st, 2017].  The focus of the project has been about improving the quality of validation for predictions of structural behaviour in aircraft using fewer, better physical tests.  We have developed an enhanced flowchart for model validation [see ‘Spontaneously MOTIVATEd’ on June 27th, 2018], a method for quantifying uncertainty in measurements of deformation in an industrial environment [see ‘Industrial uncertainty’ on December 12th, 2018] and a toolbox for quantifying the extent to which predictions from computational models represent measurements made in the real-world [see ‘Alleviating industrial uncertainty’ on May 13th, 2020].  In the last phase of the project, we demonstrated all of these innovations on the fuselage nose section of an aircraft.  The region of interest was the fuselage skin behind the cockpit window for which the out-of-plane displacements resulting from an internal pressurisation load were predicted using a finite element model [see ‘Did cubism inspire engineering analysis?’ on January 25th, 2017].  The computational model was provided by Airbus and is shown on the left in the top graphic with the predictions for the region of interest on the right.  We used a stereoscopic imaging system  to record images of a speckle pattern on the fuselage before and after pressurization; and from these images, we evaluated the out-of-plane displacements using digital image correlation (DIC) [see ‘256 shades of grey‘ on January 22, 2014 for a brief explanation of DIC].  The bottom graphic shows the measurements being made with assistance from an Airbus contractor, Strain Solutions Limited.  We compared the predictions quantitatively against the measurements in a double-blind process which meant that the modellers and experimenters had no access to one another’s results.  The predictions were made by one MOTIVATE partner, Athena Research Centre; the measurements were made by another partner, Dantec Dynamics GmbH supported by Strain Solutions Limited; and the quantitative comparison was made by the project coordinator, the University of Liverpool.  We found that the level of agreement between the predictions and measurements changed with the level of pressurisation; however, the main outcome was the demonstration that it was possible to perform a double-blind validation process to quantify the extent to which the predictions represented the real-world behaviour for a full-scale aerospace structure.

The content of this post is taken from a paper that was to be given at a conference later this summer; however, the conference has been postponed due to the pandemic.  The details of the paper are: Patterson EA, Diamantakos I, Dvurecenska K, Greene RJ, Hack E, Lampeas G, Lomnitz M & Siebert T, Application of a model validation protocol to an aircraft cockpit panel, submitted to the International Conference on Advances in Experimental Mechanics to be held in Oxford in September 2021.  I would like to thank the authors for permission to write about the results in this post and Linden Harris of Airbus SAS for enabling the study and to him and Eszter Szigeti for providing technical advice.

For more on the validation flowchart see: Hack E, Burguete R, Dvurecenska K, Lampeas G, Patterson E, Siebert T & Szigeti, Steps towards industrial validation experiments, In Multidisciplinary Digital Publishing Institute Proceedings (Vol. 2, No. 8, p. 391) https://www.mdpi.com/2504-3900/2/8/391

For more posts on the MOTIVATE project: https://realizeengineering.blog/category/myresearch/motivate-project/

The MOTIVATE project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 754660 and the Swiss State Secretariat for Education, Research and Innovation under contract number 17.00064.

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

Spatio-temporal damage maps for composite materials

Earlier this year, my group published a new technique for illustrating the development of damage as a function of both space and time in materials during testing in a laboratory.  The information is presented in a damage-time map and shows where and when damage appears in the material.  The maps are based on the concept that damage represents a change in the structure of the material and, hence, produces changes in the load paths or stress distribution in the material.  We can use any of a number of optical techniques to measure strain, which is directly related to stress, across the surface of the material; and then look for changes in the strain distribution in real-time.  Wherever a permanent change is seen to occur there must also be permanent deformation or damage. We use image decomposition techniques that we developed some time ago [see ‘Recognizing strain‘ on October 28th, 2018], to identify the changes. Our damage-time maps remove the need for skilled operators to spend large amounts of time reviewing data and making subjective decisions.  They also allow a large amount of information to be presented in a single image which makes detailed comparisons with computer predictions easier and more readily quantifiable that, in turn, supports the validation of computational models [see ‘Model validation‘ on September 18th, 2012].

The structural integrity of composite materials is an on-going area of research because we only have a limited understanding of these materials.  It is easy to design structures using materials that have a uniform or homogeneous structure and mechanical properties which do not vary with orientation, i.e. isotropic properties.  For simple components, an engineer can predict the stresses and likely failure modes using the laws of physics, a pencil and paper plus perhaps a calculator.  However, when materials contain fibres embedded in a matrix, such as carbon-fibres in an epoxy resin, then the analysis of structural behaviour becomes much more difficult due to the interaction between the fibres and with the matrix.  Of course, these interactions are also what make these composite materials interesting because they allow less material to be used to achieve the same performance as homogeneous isotropic materials.  There are very many ways of arranging fibres in a matrix as well as many different types of fibres and matrix; and, engineers do not understand most of their interactions nor the mechanisms that lead to failure.

The image shows, on the left, the maximum principal strain in a composite specimen loaded longitudinally in tension to just before failure; and, on the right, the corresponding damage-time map indicating when and where damage developing during the tension loading.


Christian WJR, Dvurecenska K, Amjad K, Pierce J, Przybyla C & Patterson EA, Real-time quantification of damage in structural materials during mechanical testing, Royal Society Open Science, 7:191407, 2020.