Category Archives: design

Follow your gut

Decorative image of a fruit fly nervous system Albert Cardona HHMI Janelia Research Campus Welcome Image Awards 2015Data centres worldwide consume about 1% of global electricity generation, that’s 200-250 TWh (Masenet et al, 2020), and if you add in mining of cryptocurrencies then consumption jumps by about 50% (Gallersdörfer et al, 2020). Data transmission consumes about 260-340 TWh or at least another 1% of global energy consumption (IEA, 2020).  The energy efficiency of modern computers has been improving; however, their consumption is still many millions times greater than the theoretical limit defined by Landauer’s principle which was verified in 2012 by Bérut et al.  According to Landauer’s principle, a computer operating at room temperature would only need 3 zJ (300 billion billionths of a Joule) to erase a bit of information.  The quantity of energy used by modern computers is many millions times the Landauer limit.  Of course, progress is being made almost continuously, for example a team at EPFL in Lausanne and ETH Zurich recently described a new technology that uses only a tenth of the energy of current transistors (Oliva et al 2020).  Perhaps we need turn to biomimetics because Escherichia Coli, which are bacteria that live in our gut and have to process information to reproduce, have been found to use ten thousand times less energy to process a bit of information than the average human-built device for processing information (Zhirnov & Cavin, 2013).  So, E.coli are still some way from the Landauer limit but demonstrate that there is considerable potential for improvement in engineered devices.


Bérut A, Arakelyan A, Petrosyan A, Ciliberto S, Dillenschneider R & Lutz E. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature, 483: 187–189, 2012.

IEA (2021), Data Centres and Data Transmission Networks, IEA, Paris

Gallersdörfer U, Klaaßen L, Stoll C. Energy consumption of cryptocurrencies beyond bitcoin. Joule. 4(9):1843-6, 2020.

Masanet E, Shehabi A, Lei N, Smith S, Koomey J. Recalibrating global data center energy-use estimates. Science. 367(6481):984-6, 2020.

Oliva N, Backman J, Capua L, Cavalieri M, Luisier M, Ionescu AM. WSe 2/SnSe 2 vdW heterojunction Tunnel FET with subthermionic characteristic and MOSFET co-integrated on same WSe 2 flake. npj 2D Materials and Applications. 4(1):1-8, 2020.

Zhirnov VV, Cavin RK. Future microsystems for information processing: limits and lessons from the living systems. IEEE Journal of the Electron Devices Society. 1(2):29-47, 2013.

Digital twins that thrive in the real-world

Decorative image

Windows of the Soul II [3D video art installation:

Digital twins are becoming ubiquitous in many areas of engineering [see ‘Can you trust your digital twin?‘ on November 23rd, 2016].  Although at the same time, the terminology is becoming blurred as digital shadows and digital models are treated as if they are synonymous with digital twins.  A digital model is a digitised replica of physical entity which lacks any automatic data exchange between the entity and its replica.  A digital shadow is the digital representation of a physical object with a one-way flow of information from the object to its representation.  But a digital twin is a functional representation with a live feedback loop to its counterpart in the real-world.  The feedback loop is based on a continuous update to the digital twin about the condition and performance of the physical entity based on data from sensors and on analysis from the digital twin about the performance of the physical entity.  This enables a digital twin to provide a service to many stakeholders.  For example, the users of a digital twin of an aircraft engine could include the manufacturer, the operator, the maintenance providers and the insurers.  These capabilities imply digital twins are themselves becoming products which exist in a digital context that might connect many digital products thus forming an integrated digital environment.  I wrote about integrated digital environments when they were a concept and the primary challenges were technical in nature [see ‘Enabling or disruptive technology for nuclear engineering?‘ on January 28th, 2015].  Many of these technical challenges have been resolved and the next set of challenges are economic and commercial ones associated with launching digital twins into global markets that lack adequate understanding, legislation, security, regulation or governance for digital products.  In collaboration with my colleagues at the Virtual Engineering Centre, we have recently published a white paper, entitled ‘Transforming digital twins into digital products that thrive in the real world‘ that reviews these issues and identifies the need to establish digital contexts that embrace the social, economic and technical requirements for the appropriate use of digital twins [see ‘Digital twins could put at risk what it means to be human‘ on November 18th, 2020].

Hot air is good for balloons but cold air is better for cars

photograph of a MDI Airpod 2.0Cars that run on air might seem like a fairy tale or an April Fools story; but it is possible to use air as a medium for storing energy by compressing it or liquifying it at -196°C.  The MDI company in Luxembourg has been developing and building a compressed air engine which powers a small car, or Airpod 2.0 and a new industrial vehicle, the Air‘Volution.  When the compressed air is allowed to expand, the energy stored in it is released and can be used to power the vehicle.  The Airpod 2.0 weighs only 350 kg, has seats for two people, 400 litres of luggage space and an urban cycle range of 100 to 120 km at a top speed of 80 km/h.  So, it is an urban runabout with zero emissions and no requirement for lithium, nickel or cobalt for batteries but a limited range.  A couple of years ago I tasked an MSc student with a project to consider the practicalities of a car running on liquid air, based on the premise that it should be possible to store a higher density of energy in liquified air (about 290 kJ/litre) than in compressed air (about 100 kJ/litre).  His concept design used a rolling piston engine to power a family car capable of carrying 5 passengers and 346 litres of luggage over a 160 km.  So, his design carried a bigger payload for further than the Airpod 2.0; however, like the electric charging system described a few weeks ago [see ‘Innovative design too far ahead of the market’ on May 5th, 2021], the design never the left the drawing board.

Innovative design too far ahead of the market?

computer rendering of street with kerbstones fitted for chraging electric vehiclesThe forthcoming COP26 conference in Glasgow is generating much discussion about ambitions to achieve net zero carbon emissions. These ambitions tend to be articulated by national governments or corporate leaders and there is less attention paid to the details of achieving zero emissions at the mundane level of everyday life. For instance, how to recharge an electric car if you live in an apartment building or a terraced house without a designated parking space. About six years ago, I supervised an undergraduate engineering student who designed an induction pad integrated into a kerbstone for an electric vehicle.  The kerbstone looked the same as a conventional one, which it could replace, but was connected to the mains electricity supply under the pavement.  A primary coil was integrated into the kerbstone and a secondary coil was incorporated into the side skirt of the vehicle, which could be lowered towards the kerbstone when the vehicle was parked.  The energy transferred from the primary coil in the kerbstone to the secondary coil in the vehicle via a magnetic field that conformed to radiation safety limits for household appliances.  Payment for charging was via a passive RFID card that connected to an app on your mobile phone.  The student presented her design at the Future Powertrain Conference (FCP 2015)  where her poster won first prize and we discussed spinning out a company to develop, manufacture and market the design.  However, a blue-chip engineering company offered the student a good job and we decided that the design was probably ahead of its time so it has remained on the drawing board.  Our technopy, or technology entropy was too high, we were ahead of the rate of change in the marketplace and launching a new product in these conditions can be disastrous.  Maybe the market is catching up with our design?

For more on technopy see Handscombe RD and Patterson EA ‘The Entropy Vector: Connecting Science and Business‘, World Scientific, Singapore, 2004.