Tag Archives: research

Archive video footage from EU projects

This week I am in the US presenting work from our EU projects INSTRUCTIVE and MOTIVATE at the Annual Conference and Exposition of the Society for Experimental Mechanics.  Although the INSTRUCTIVE project was completed at the end of December 2018, the process of disseminating and exploiting the research will go on for some time.  The capability to identify the initiation of cracks when they are less than 1mm long and to track their propagation is a key piece of technology for DIMES project in which we are developing an integrated system for monitoring the condition of aircraft structures.  We are in the last twelve months of the MOTIVATE project and we have started producing video clips about the technology that is being developed.  So, if you missed my presentations at the conference in the US then you can watch the videos online using the links below 😉.

We have been making videos describing the outputs of our EU project for about 20 years; so, if you want to see some vintage footage of me twenty years younger then watch a video from the INDUCE project that was active from 1998 to 2001.

MOTIVATE videos: Introduction; Industrial calibration of DIC measurements using a calibration plate or using an LCD screen

The MOTIVATE project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 754660.

Image: Peppermill Hotel in Reno, Nevada where the conference is being held.

 

Feedback is a gift

In academic life you get used to receiving feedback, including plenty of negative feedback when your grant proposal is declined by a funding agency or your manuscript is rejected by the editor of a journal.  We are also subject to annual performance reviews which can be difficult if all of your proposals and manuscripts have been rejected.  So, how should we respond to negative feedback?

The Roman philosopher, Marcus Aurelius is credited with the saying ‘Everything we hear is an opinion, not a fact’, which perhaps implies we should not take the negative feedback too seriously, or at least we should look for some evidence.

Tasha Eurich has suggested we should mine it for insight and harness it for improvement but without incurring collateral damage to your self-confidence.  He recommends a five-point approach, based on empirical evidence:

  1. Don’t rush to react
  2. Gather more evidence
  3. Find a harbinger
  4. Don’t be a lonely martyr but engage in dialogue
  5. Remember that change is not the only option; you can accept your weaknesses, share them and work around them.

If you are the one giving the negative feedback then it is worth remembering the stages of response to bad news are denial, anger, bargaining, depression and acceptance.  Hopefully, the feedback will not induce the full range of response but, when it does, you should not be surprised.

See earlier posts on giving [‘Feedback on feedback‘ on June 28th, 2017] and receiving student feedback [‘Deep long-term learning‘ on April 28th, 2018].

 

Source: Tasha Eurich, ‘The right way to respond to negative feedback’, HBR, May 31st, 2018.

Laboratory classes thirty years on

Henry Lea Laboratory, The University of Sheffield in the 1960s

I have happy memories of teaching laboratory classes at the University of Sheffield in the mid 1980s and 1990s in the Henry Lea Laboratory.  The laboratory was crammed full of equipment for experiments in mechanics of materials.  We conducted the practical classes on a limited selection of test machines that stood around a set of benches in the centre of the laboratory on which were a series of bench-top experiments for undergraduates.  The outer reaches of the laboratory were packed with test machines of various shapes and sizes that were the domain of the research students and staff.  So, undergraduate students were privileged to conduct their laboratory classes surrounded by research activity – this was one of the advantages of attending a research-intensive university to study engineering.  However, this is not the experience that modern students gain from laboratory classes.  Sheffield, like Liverpool, and many other research-intensive universities has purpose-built teaching laboratories that provide modern spacious facilities for teaching and learning but also segregate undergraduates from the research business of the university.  In the UK, the increase in student numbers, as we moved towards 50% participation in higher education, was probably a prime driver for the design and construction of these facilities.  However, often the growth in student numbers exceeds the planned capacity of the teaching laboratories and the student experience is reduced by being in a group of five or six with only one or two of them being able to get hands-on experience at the same time.  To overcome this problem, I have used practical exercises as homework assignments that can be performed in the kitchen at home by first year students.  These were initially designed for the MOOC on thermodynamics that I developed a few years ago but they work equally well for undergraduate students and allow individuals to gain experience of conducting a simple experiment, recording and processing data, and write a short report about their findings [see post on ‘Blending learning environments‘ on November 14th, 2018 and ‘Slow down time to think [about strain energy]‘ on March 8th, 2017].  I have found that the participation rate is about the same as for traditional laboratory classes but different because students can learn from their mistakes in private and acquire some experimental skills [1].  However, it is a long way from conducting labs for small cohorts in a laboratory where world-class research is in progress.

Reference:

1. Patterson EA, Using everyday examples to engage learners on a massive open online course, IJ Mechanical Engineering Education, doi: 10.1177/0306419018818551, 2018.

Digital twins and seeking consensus

A couple of weeks ago I wrote about our work on a proof-of-concept for a digital twin of a fission nuclear reactor and its extension to fusion energy [‘Digitally-enabled regulatory environment for fusion power plants‘ on March 20th, 2019].  In parallel with this work and together with a colleague in the Dalton Nuclear Institute, I am supervising a PhD student who is studying the potential role of virtual reality and social network analysis in delivering nuclear infrastructure projects.  In a new PhD project, we are aiming to extend this research to consider the potential provided by an integrated nuclear digital environment [1] in planning the disposal of nuclear waste.  We plan to look at how provision of clear, evidence-based information and in the broader adoption of digital twins to enhance public confidence through better engagement and understanding.  This is timely because the UK’s Radioactive Waste Management (RWM) have launched their new consent-based process for siting a Geological Disposal Facility (GDF). The adoption of a digital environment to facilitate a consent-based process represents a new and unprecedented approach to the GDF or any other nuclear project in the UK. So this will be an challenging and exciting research project requiring an innovative and multi-disciplinary approach involving both engineering and social sciences.

The PhD project is fully-funded for UK and EU citizens as part of a Centre for Doctoral Training and will involve a year of specialist training followed by three years of research.  For more information following this link.

Reference:

[1] Patterson EA, Taylor RJ & Bankhead M, A framework for an integrated nuclear digital environment, Progress in Nuclear Energy, 87:97-103, 2016.

Image: Artist’s impression of geological disposal facility from https://www.gov.uk/government/news/geological-disposal-understanding-our-work