Tag Archives: research

Tears in the heart

Figure 7 from Chew et al 1999A couple of weeks ago I wrote about speaking to a workshop on the aorta and reminisced about research on cardiac dynamics from about 15 years ago.  It triggered another memory of research we did more than 20 years ago on the tearing of the leaflets of artificial heart valves made from biological tissue.  We developed a computational model of the stresses associated with a tear developing in a porcine bioprosthetic heart valve.  The black and white images show snapshots of the predicted motion during the cardiac cycle of a damaged valve with a tear at about 11.30 along the edge of the top right leaflet.  The valve was simulated as being implanted to replace the aortic valve and the view is from the aorta, i.e., looking in the opposite direction to the blood flow out of the heart.  The tear causes part of the leaflet to flap outwards as can be seen in the middle snapshots.  The colour image shows the distribution of stress in the leaflet corresponding to the last snapshot of the motion and the concentration of stress around the tip of the tear can be seen which will tend to cause the leaflet to tear further leading to a bigger flap, more regurgitation of blood.  We were really excited about this research when we published it in 1999 but it has attracted relatively little attention in the last 23 years.  I would like to think that we were far ahead of our times but that’s unlikely and probably it was not as exciting as we thought, maybe because it lacked clinical relevance, our model lacked credibility or not many people have found our paper.

Source: Chew GG, Howard IC & Patterson EA, Simulation of damage in a porcine prosthetic heart valve, J. Medical Engineering & Technology, 23(5):178-189, 1999.


Horsepower driving ambition

A photograph of 'Physical Energy' in Kensington Gardens - a sculpture of a man on a horseWalking across Kensington Gardens in London last week, on my way to attend a conference on Carbon, I came across the sculpture in the picture.  It is ‘Physical Energy’ by George Frederick Watts (1817 – 1904), which really confused me because I automatically started thinking about the sort of energy that is associated with horsepower.  Horsepower is a unit of power (energy per unit time) developed by James Watt (1736 – 1819) to evaluate the output of his steam engines.  The plaque below the sculpture calls it a ‘sculptural masterpiece; a universal embodiment of the dynamic force of ambition’ and states that the artist described it as a ‘symbol of that restless physical impulse to seek the still unachieved in the domain of physical things.’  So, while the connections seemed obvious to me, it would appear that Watts was not inspired by Watt.

The conference was interesting too.  There were delegates from all over the world presenting research on a wide range of topics from new designs of batteries to using carbon as an sorbent for toxins, carbon-based composites and self-assembly of metal-organic meso-crystals.  Two students that I have supervised were presenting their research on establishing credibility for models of the graphite core in nuclear power plants and on algorithms for identifying the surface morphology in samples of graphite.

Diving into three-dimensional fluids

My research group has been working for some years on methods that allow straightforward comparison of large datasets [see ‘Recognizing strain’ on October 28th 2015].  Our original motivation was to compare maps of predicted strain over the surface of engineering structures with maps of measurements.  We have used these comparison methods to validate predictions produced by computational models [see ‘Million to one’ on November 21st 2018] and to identify and track changes in the condition of engineering structures [see ‘Out of the valley of death into a hype cycle’ on February 24th 2021].  Recently, we have extended this second application to tracking changes in the environment including the occurance of El Niño events [see ‘From strain measurements to assessing El Niño events’ on March 17th, 2021].  Now, we are hoping to extend this research into fluid mechanics by using our techniques to compare flow patterns.  We have had some success in exploring the use of methods to optimise the design of the mesh of elements used in computational fluid dynamics to model some simple flow regimes.  We are looking for a PhD student to work on extending our model validation techniques into fluid mechanics using volumes of data from measurement and predictions rather than fields, i.e., moving from two-dimensional to three-dimensional datasets.  If you are interested or know someone who might be interested then please get in touch.

There is more information on the PhD project here.

Fancy a pint of science?

In September I am planning to initiate a new research project on the interaction of bacteria with cellular and hard surfaces.  It is in collaboration with Jude Curran and is co-funded by Unilever and the Biotechnology and Biological Sciences Research Council.  We have already used the optical method of caustics in a microscope to track and characterise the movement of synthetic nanoparticles as small as 3 nm in an array of biologically-relevant solutions [see ‘Nano biomechanical engineering of agent delivery to cells’ on December 15th, 2021].  We have also used the same technique to characterise and quantify the motion and growth of bacteria in solutions.  Now, we plan to use caustic signatures as a label-free tracking technology for pre-clinical testing of antimicrobial solutions and coatings.  We plan to start by considering binding and removal of viral particles and bacterial spores from hard and soft laundry surfaces using various bacterial species, including Staph aureus which is responsible for laundry malodour; before progressing to the interaction of bacteria with human oral and skin cell cultures.  We are in the process of recruiting a suitable PhD student so if you are interested or know someone who might be suitable then get in touch.  If you want to learn more about our tracking technology and fancy a pint of science, then join us in Liverpool in May for part of the world’s largest festival of public science.  I will be talking about ‘Revealing the invisible: real-time motion of virus particles’  on May 10th at 7.30pm on Leaf of Bold Street.

Liverpool Pint of Science programme

UK Pint of Science programme