Category Archives: Engineering

Knowledge explosions

Photo credit: Tom

When the next cohort of undergraduate students were born, Wikipedia had only just been founded [January 2001] and Google had been in existence for just over a decade [since 1998].  In their lifetime, the number of articles on Wikipedia has grown to nearly 6 million in the English language, which is equivalent to 2,500 print volumes of the Encyclopedia Britannica, and counting all language editions there are 48 million articles.  When Leonardo Da Vinci was born in 1452, Johan Gutenberg had just published his first Bible using moveable type.  By the time Leonardo Da Vinci was 20 years old, about 15 million books had been printed which was more than all of the scribes in Europe had produced in the previous 1500 years.  Are these comparable explosions in the availability of knowledge?  The proportion of the global population that is literate has changed dramatically from about 2%, when Leonardo was alive, to over 80% today which probably makes the arrival of the internet, Wikipedia and other online knowledge bases much more significant than the invention of the printing press.

Today what matters is not what you know but what you can do with the knowledge because access to the internet via your smart phone has made memorisation redundant.

Pluralistic ignorance

This semester I am teaching an introductory course in Thermodynamics to undergraduate students using a blended learning approach [see ‘Blended learning environments‘ on November 14th, 2018].  The blend includes formal lectures, example classes, homework assignments, assessed coursework questions and an on-line course, which I delivered as a MOOC a couple of years ago [see ‘Engaging learners on-line‘ on May 25th, 2016].  It is not unusual in a large class, nearly two hundred students this year, that no one asks questions during the lecture; although, at the end of each lecture and example class, a small group of students with questions always forms.  The on-line course has extensive opportunities for asking questions and discussing issues with the instructor and fellow learners.  These opportunities  were used heavily when the course was offered as a MOOC  with 6600 comments posted or 1 every 7.7 minutes!  However, this year the undergraduates have not made any on-line comments and it was a similar situation last year.  Is this a case of pluralistic ignorance?  The term was coined by psychologists Daniel Katz and Floyd Henry Allport in 1931 to describe students who pretend to understand everything explained in class and don’t ask any questions because they believe everyone else in the class has understood everything and they don’t want to damage their reputation with their peers.  Perhaps we have all done it and been very grateful when someone has asked the question that we wanted to ask but did not dare.  Would be it ethical to pretend to be a student and post questions on-line that I know from the MOOC they are likely to want to ask?

Sources:

Patterson EA, Using everyday engineering examples to engage learners on a massive open online course, IJ Mechanical Engineering Education, in press.

Katz D & Allport FH, Students’ attitude, Syracuse, NY: Craftsmann, 1931.

Origgi G, Reputation: what it is and why it matters, Princeton, NJ: Princeton University Press, 2018.

Image: Author speaking at National Tsing Hua University, Taiwan

Digital twins and seeking consensus

A couple of weeks ago I wrote about our work on a proof-of-concept for a digital twin of a fission nuclear reactor and its extension to fusion energy [‘Digitally-enabled regulatory environment for fusion power plants‘ on March 20th, 2019].  In parallel with this work and together with a colleague in the Dalton Nuclear Institute, I am supervising a PhD student who is studying the potential role of virtual reality and social network analysis in delivering nuclear infrastructure projects.  In a new PhD project, we are aiming to extend this research to consider the potential provided by an integrated nuclear digital environment [1] in planning the disposal of nuclear waste.  We plan to look at how provision of clear, evidence-based information and in the broader adoption of digital twins to enhance public confidence through better engagement and understanding.  This is timely because the UK’s Radioactive Waste Management (RWM) have launched their new consent-based process for siting a Geological Disposal Facility (GDF). The adoption of a digital environment to facilitate a consent-based process represents a new and unprecedented approach to the GDF or any other nuclear project in the UK. So this will be an challenging and exciting research project requiring an innovative and multi-disciplinary approach involving both engineering and social sciences.

The PhD project is fully-funded for UK and EU citizens as part of a Centre for Doctoral Training and will involve a year of specialist training followed by three years of research.  For more information following this link.

Reference:

[1] Patterson EA, Taylor RJ & Bankhead M, A framework for an integrated nuclear digital environment, Progress in Nuclear Energy, 87:97-103, 2016.

Image: Artist’s impression of geological disposal facility from https://www.gov.uk/government/news/geological-disposal-understanding-our-work

 

Assessing nanoparticle populations in historic nuclear waste

Together with colleagues at the JRC Ispra, my research group has shown that the motion of small nanoparticles at low concentrations is independent of their size, density and material [1], [see ‘Slow moving nanoparticles‘ on December 13th, 2017].  This means that commercially-available instruments for evaluating the size and number of nanoparticles in a solution will give erroneous results under certain conditions.  In a proposed PhD project, we are planning to extend our work to develop an instrument with capability to automatically identify and size nanoparticles, in the range from 1 to 150 nanometres, using the three-dimensional optical signature, or caustic, which particles generate in an optical microscope, that can be several orders of magnitude larger than the particle [2],  [see ‘Toxic nanoparticles?‘ on November 13th, 2013].  The motivation for the work is the need to characterise particles present in solution in legacy ponds at Sellafield.  Legacy ponds at the Sellafield site have been used to store historic radioactive waste for decades and progress is being made in reducing the risks associated with these facilities [3].  Over time, there has been a deterioration in the condition of the ponds and their contents that has resulted in particles being present in solution in the ponds.  It is important to characterise these particles in order to facilitate reductions in the risks associated with the ponds.  We plan to use our existing facilities at the University of Liverpool to develop a novel instrument using simple solutions probably with gold nanoparticles and then to progress to non-radioactive simulants of the pond solutions.  The long-term goal will be to transition the technology to the Sellafield site perhaps with an intermediate step involving a demonstration of  the technology on pond solutions using the facilities of the National Nuclear Laboratory.

The PhD project is fully-funded for UK and EU citizens as part of a Centre for Doctoral Training and will involve a year of specialist training followed by three years of research.  For more information following this link.

References:

[1] Coglitore, D., Edwardson, S.P., Macko, P., Patterson, E.A., & Whelan, M.P., Transition from fractional to classical Stokes-Einstein behaviour in simple fluids, Royal Society Open Science, 4:170507, 2017.

[2] Patterson, E.A., Whelan, P., 2008, ‘Optical signatures of small nanoparticles in a conventional microscopeSmall, 4(10):1703-1706.

[3] Comptroller and Auditor General, The Nuclear Decommissioning Authority: progress with reducing risk at Sellafield, National Audit Office, HC 1126, Session 2017-19, 20 June 2018.