Tag Archives: validation

35 years later and still working on a PhD thesis

It is about 35 years since I graduated with my PhD.  It was not ground-breaking although, together with my supervisor, I did publish about half a dozen technical papers based on it and some of those papers are still being cited, including one this month which surprises me.  I performed experiments and computer modelling on the load and stress distribution in threaded fasteners, or nuts and bolts.  There were no digital cameras and no computer tomography; so, the experiments involved making and sectioning models of nuts and bolts in transparent plastic using three-dimensional photoelasticity [see ‘Art and Experimental Mechanics‘ on July 17th, 2012].  I took hundreds of photographs of the sections and scanned the negatives in a microdensitometer.  The computer modelling was equally slow and laborious because there were no graphical user interfaces (GUI); instead, I had to type strings of numbers into a terminal, wait overnight while the calculations were performed, and then study reams of numbers printed out on long rolls of paper.  The tedium of the experimental work inspired me to work on utilising digital technology to revolutionise the field of experimental mechanics over the following 15 to 20 years.  In the past 15 to 20 years, I have moved back towards computer modelling and focused on transforming the way in which measurement data are used to improve the fidelity of computer models and to establish confidence in their predictions [see ‘Establishing fidelity and credibility in tests and simulations‘ on July 25th, 2018].  Since completing my PhD, I have supervised 32 students to successful completion of their PhDs.  You might think that was a straightforward process of an initial three years for the first one to complete their research and write their thesis, followed by one graduating every year.  But that is not how it worked out, instead I have had fallow years as well as productive years.  At the moment, I am in a productive period, having graduated two PhD students per year since 2017 – that’s a lot of reading and I have spent much of the last two weekends reviewing a thesis which is why PhD theses are the topic of this post!

Footnote: the most cited paper from my thesis is ‘Kenny B, Patterson EA. Load and stress distribution in screw threads. Experimental Mechanics. 1985 Sep 1;25(3):208-13‘ and this month it was cited by ‘Zhang D, Wang G, Huang F, Zhang K. Load-transferring mechanism and calculation theory along engaged threads of high-strength bolts under axial tension. Journal of Constructional Steel Research. 2020 Sep 1;172:106153‘.

The blind leading the blind

Three years after it started, the MOTIVATE project has come to an end [see ‘Getting smarter’ on June 21st, 2017].  The focus of the project has been about improving the quality of validation for predictions of structural behaviour in aircraft using fewer, better physical tests.  We have developed an enhanced flowchart for model validation [see ‘Spontaneously MOTIVATEd’ on June 27th, 2018], a method for quantifying uncertainty in measurements of deformation in an industrial environment [see ‘Industrial uncertainty’ on December 12th, 2018] and a toolbox for quantifying the extent to which predictions from computational models represent measurements made in the real-world [see ‘Alleviating industrial uncertainty’ on May 13th, 2020].  In the last phase of the project, we demonstrated all of these innovations on the fuselage nose section of an aircraft.  The region of interest was the fuselage skin behind the cockpit window for which the out-of-plane displacements resulting from an internal pressurisation load were predicted using a finite element model [see ‘Did cubism inspire engineering analysis?’ on January 25th, 2017].  The computational model was provided by Airbus and is shown on the left in the top graphic with the predictions for the region of interest on the right.  We used a stereoscopic imaging system  to record images of a speckle pattern on the fuselage before and after pressurization; and from these images, we evaluated the out-of-plane displacements using digital image correlation (DIC) [see ‘256 shades of grey‘ on January 22, 2014 for a brief explanation of DIC].  The bottom graphic shows the measurements being made with assistance from an Airbus contractor, Strain Solutions Limited.  We compared the predictions quantitatively against the measurements in a double-blind process which meant that the modellers and experimenters had no access to one another’s results.  The predictions were made by one MOTIVATE partner, Athena Research Centre; the measurements were made by another partner, Dantec Dynamics GmbH supported by Strain Solutions Limited; and the quantitative comparison was made by the project coordinator, the University of Liverpool.  We found that the level of agreement between the predictions and measurements changed with the level of pressurisation; however, the main outcome was the demonstration that it was possible to perform a double-blind validation process to quantify the extent to which the predictions represented the real-world behaviour for a full-scale aerospace structure.

The content of this post is taken from a paper that was to be given at a conference later this summer; however, the conference has been postponed due to the pandemic.  The details of the paper are: Patterson EA, Diamantakos I, Dvurecenska K, Greene RJ, Hack E, Lampeas G, Lomnitz M & Siebert T, Application of a model validation protocol to an aircraft cockpit panel, submitted to the International Conference on Advances in Experimental Mechanics to be held in Oxford in September 2021.  I would like to thank the authors for permission to write about the results in this post and Linden Harris of Airbus SAS for enabling the study and to him and Eszter Szigeti for providing technical advice.

For more on the validation flowchart see: Hack E, Burguete R, Dvurecenska K, Lampeas G, Patterson E, Siebert T & Szigeti, Steps towards industrial validation experiments, In Multidisciplinary Digital Publishing Institute Proceedings (Vol. 2, No. 8, p. 391) https://www.mdpi.com/2504-3900/2/8/391

For more posts on the MOTIVATE project: https://realizeengineering.blog/category/myresearch/motivate-project/

The MOTIVATE project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 754660 and the Swiss State Secretariat for Education, Research and Innovation under contract number 17.00064.

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

Alleviating industrial uncertainty

Want to know how to assess the quality of predictions of structural deformation from a computational model and how to diagnose the causes of differences between measurements and predictions?  The MOTIVATE project has the answers; that might seem like an over-assertive claim but read on and make your own judgment.  Eighteen months ago, I reported on a new method for quantifying the uncertainty present in measurements of deformation made in an industrial environment [see ‘Industrial uncertainty’ on December 12th, 2018] that we were trialling on a 1 m square panel of an aircraft fuselage.  Recently, we have used the measurement uncertainty we found to make judgments about the quality of predictions from computer models of the panel under compressive loading.  The top graphic shows the outside surface of the panel (left) with a speckle pattern to allow measurements of its deformation using digital image correlation (DIC) [see ‘256 shades of grey‘ on January 22, 2014 for a brief explanation of DIC]; and the inside surface (right) with stringers and ribs.  The bottom graphic shows our results for two load cases: a 50 kN compression (top row) and a 50 kN compression and 1 degree of torsion (bottom row).  The left column shows the out-of-plane deformation measured using a stereoscopic DIC system and the middle row shows the corresponding predictions from a computational model using finite element analysis [see ‘Did cubism inspire engineering analysis?’ on January 25th, 2017].  We have described these deformation fields in a reduced form using feature vectors by applying image decomposition [see ‘Recognizing strain’ on October 28th, 2015 for a brief explanation of image decomposition].  The elements of the feature vectors are known as shape descriptors and corresponding pairs of them, from the measurements and predictions, are plotted in the graphs on the right in the bottom graphic for each load case.  If the predictions were in perfect agreement with measurements then all of the points on these graphs would lie on the line equality [y=x] which is the solid line on each graph.  However, perfect agreement is unobtainable because there will always be uncertainty present; so, the question arises, how much deviation from the solid line is acceptable?  One answer is that the deviation should be less than the uncertainty present in the measurements that we evaluated with our new method and is shown by the dashed lines.  Hence, when all of the points fall inside the dashed lines then the predictions are at least as good as the measurements.  If some points lie outside of the dashed lines, then we can look at the form of the corresponding shape descriptors to start diagnosing why we have significant differences between our model and experiment.  The forms of these outlying shape descriptors are shown as insets on the plots.  However, busy, or non-technical decision-makers are often not interested in this level of detailed analysis and instead just want to know how good the predictions are.  To answer this question, we have implemented a validation metric (VM) that we developed [see ‘Million to one’ on November 21st, 2018] which allows us to state the probability that the predictions and measurements are from the same population given the known uncertainty in the measurements – these probabilities are shown in the black boxes superimposed on the graphs.

These novel methods create a toolbox for alleviating uncertainty about predictions of structural behaviour in industrial contexts.  Please get in touch if you want more information in order to test these tools yourself.

The MOTIVATE project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 754660 and the Swiss State Secretariat for Education, Research and Innovation under contract number 17.00064.

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

Spatio-temporal damage maps for composite materials

Earlier this year, my group published a new technique for illustrating the development of damage as a function of both space and time in materials during testing in a laboratory.  The information is presented in a damage-time map and shows where and when damage appears in the material.  The maps are based on the concept that damage represents a change in the structure of the material and, hence, produces changes in the load paths or stress distribution in the material.  We can use any of a number of optical techniques to measure strain, which is directly related to stress, across the surface of the material; and then look for changes in the strain distribution in real-time.  Wherever a permanent change is seen to occur there must also be permanent deformation or damage. We use image decomposition techniques that we developed some time ago [see ‘Recognizing strain‘ on October 28th, 2018], to identify the changes. Our damage-time maps remove the need for skilled operators to spend large amounts of time reviewing data and making subjective decisions.  They also allow a large amount of information to be presented in a single image which makes detailed comparisons with computer predictions easier and more readily quantifiable that, in turn, supports the validation of computational models [see ‘Model validation‘ on September 18th, 2012].

The structural integrity of composite materials is an on-going area of research because we only have a limited understanding of these materials.  It is easy to design structures using materials that have a uniform or homogeneous structure and mechanical properties which do not vary with orientation, i.e. isotropic properties.  For simple components, an engineer can predict the stresses and likely failure modes using the laws of physics, a pencil and paper plus perhaps a calculator.  However, when materials contain fibres embedded in a matrix, such as carbon-fibres in an epoxy resin, then the analysis of structural behaviour becomes much more difficult due to the interaction between the fibres and with the matrix.  Of course, these interactions are also what make these composite materials interesting because they allow less material to be used to achieve the same performance as homogeneous isotropic materials.  There are very many ways of arranging fibres in a matrix as well as many different types of fibres and matrix; and, engineers do not understand most of their interactions nor the mechanisms that lead to failure.

The image shows, on the left, the maximum principal strain in a composite specimen loaded longitudinally in tension to just before failure; and, on the right, the corresponding damage-time map indicating when and where damage developing during the tension loading.


Christian WJR, Dvurecenska K, Amjad K, Pierce J, Przybyla C & Patterson EA, Real-time quantification of damage in structural materials during mechanical testing, Royal Society Open Science, 7:191407, 2020.