Tag Archives: science

Mapping atoms

Typical atom maps of P, Cu, Mn, Ni & Si (clockwise from bottom centre) in 65x65x142 nm sample of steel from Styman et al, 2015.

A couple of weeks ago I wrote about the opening plenary talk at the NNL Sci-Tec conference [‘The disrupting benefit of innovation’ on May 23rd, 2018].  One of the innovations discussed at the conference was the applications of atom probe tomography for understanding the mechanisms underpinning material behaviour.  Atom probe tomography produces three-dimensional maps of the location and type of individual atoms in a sample of material.  It is a destructive technique that uses a high energy pulse to induce field evaporation of ions from the tip of a needle-like sample.  A detector senses the position of the ions and their chemical identity is found using a mass spectrometer.  Only small samples can be examined, typically of the order of 100nm.

A group led by Jonathan Hyde at NNL have been exploring the use of atom probe tomography to understand the post-irradiation annealing of weld material in reactor pressure vessels and to examine the formation of bubbles of rare gases in fuel cladding which trap hydrogen causing material embrittlement.  A set of typical three-dimensional maps of atoms is shown in the thumb-nail from a recent paper by the group (follow the link for the original image).

It is amazing that we can map the location of atoms within a material and we are just beginning to appreciate the potential applications of this capability.  As another presenter at the conference said: ‘Big journeys begin with Iittle steps’.

BTW it was rewarding to see one of our alumni from our CPD course [see ‘Leadership is like shepherding’ on May 10th, 2017] presenting this work at the conference.


Styman PD, Hyde JM, Parfitt D, Wilford K, Burke MG, English CA & Efsing P, Post-irradiation annealing of Ni-Mn-Si-enriched clusters in a neutron-irradiated RPV steel weld using atom probe tomography, J. Nuclear Materials, 459:127-134, 2015.

Third time lucky

At the end of last year my research group had articles published by the Royal Society’s journal  Open Science in two successive months [see ‘Press Release!‘ on November 15th, 2017 and ‘Slow moving nanoparticles‘ on December 13th, 2017].  I was excited about both publications because I had only had one article published before by the Royal Society and because the Royal Society issues a press release whenever it publishes a new piece of science.  However, neither press release generated any interest from anyone; probably because science does not sell newspapers (or attract viewers) unless it is bad news or potentially life-changing.  And our work on residual stress around manufactured holes in aircraft or on the motion of nanoparticles does not match either of these criteria.

Last month, we did it again with an article on ‘An experimental study on the manufacture and characterization of in-plane fibre-waviness defects in composites‘.  Third time lucky, because this time our University press office were interested enough to write a piece for the news page of the University website, entitled ‘Engineers develop new method to recreate fibre waviness defects in lab‘.  Fibre waviness is an issue in the manufacture of structural components of aircraft using carbon fibre reinforced composites because kinks or waves in the fibres can cause structural weaknesses.  As part of his PhD, supported by Airbus and the UK Engineering and Physical Sciences Research Council (EPSRC), Will Christian developed an innovative technique to generate defects in our lab so that we can gain a better understanding of them. Read the article or the press release to find out more!

Image shows fracture through a waviness-defect in the top-ply of a carbon-fibre laminate observed in a microscope following sectioning after failure.


Christian WJR, DiazDelaO FA, Atherton K & Patterson EA, An experimental study on the manufacture and characterisation of in-plane fibre-waviness defects in composites, R. Soc. open sci. 5:180082, 2018.

The disrupting benefit of innovation

Most scientific and technical conferences include plenary speeches that are intended to set the agenda and to inspire conference delegates to think, innovate and collaborate.  Andrew Sherry, the Chief Scientist of the UK National Nuclear Laboratory (NNL) delivered a superb example last week at the NNL SciTec 2018 which was held at the Exhibition Centre Liverpool on the waterfront.  With his permission, I have stolen his title and one of his illustrations for this post.  He used a classic 2×2 matrix to illustrate different types of change: creative change in the newspaper industry that has constantly redeveloped its assets from manual type-setting and printing to on-line delivery via your phone or tablet; progressive change in the airline industry that has incrementally tested and adapted so that modern commercial aircraft look superficially the same as the first jet airliner but represent huge advances in economy and reliability; inventive change in Liverpool’s Albert Dock that was made redundant by container ships but has been reinvented as a residential, tourism and business district.  The fourth quadrant, he reserved for the civil nuclear industry in the UK which requires disruptive change because its core assets are threatened by the end-of-life closure of all existing plants and because its core activity, supplying electrical power, is threatened by cheaper alternatives.

At the end of last year, NNL brought together all the prime nuclear organisations in the UK with leaders from other sectors, including aerospace, construction, digital, medical, rail, robotics, satellite and ship building at the Royal Academy of Engineering to discuss the drivers of innovation.  They concluded that innovation is not just about technology, but that successful innovation is driven by five mutually dependent themes that are underpinned by enabling regulation:

  1. innovative technologies;
  2. culture & leadership;
  3. collaboration & supply chain;
  4. programme and risk management; and
  5. financing & commercial models.

SciTec’s focus was ‘Innovation through Collaboration’, i.e. tackling two of these themes, and Andrew tasked delegates to look outside their immediate circle for ideas, input and solutions [to the existential threats facing the nuclear industry] – my words in parentheses.

Innovative technology presents a potentially disruptive threat to all established activities and we ignore it at our peril.  Andrew’s speech was wake up call to an industry that has been innovating at an incremental scale and largely ignoring the disruptive potential of innovation.  Are you part of a similar industry?  Maybe it’s time to check out the threats to your industry’s assets and activities…


Sherry AH, The disruptive benefit of innovation, NNL SciTec 2018 (including the graphic & title).

McGahan AM, How industries change, HBR, October 2004.

Designing for damage

Eighteen months ago I wrote about an insight on high-speed photography that Clive Siviour shared during his 2016 JSA Young Investigator Lecture [see my post entitled ‘Popping balloons‘ on June 15th, 2016].  Clive is interested in high-speed photography because he studies the properties of materials when they are subject to very high rates of deformation, in particular polymers used in mobile phones and cycle helmets – the design requirements for these two applications are very different.  The polymer used in the case of your mobile phone needs to protect the electronics inside your phone by absorbing the kinetic energy when you drop the phone on a tiled floor and it needs to be able to do this repeatedly because you are unlikely to replace the case after each accidental drop. A cyclist’s helmet also needs to protect what is inside it but it only needs to do this once because you will replace your helmet after an accident.  So, the kinetic energy resulting from an impact can be dissipated through the propagation of damage in the helmut; but in the phone case, it has to be absorbed temporarily as strain energy and then released, like in a spring.

Of course there is at least an order of magnitude difference in the consequences associated with the design of a phone case and a cycle helmet.  We can step up the consequences, at least another order of magnitude, by considering the impact performance of the polycarbonate used in the cockpit windows of airplanes.  These need to able absorb the energy associated with impacts by birds, runway debris and other objects, as well as withstanding the cycles of pressurisation associated with take-off, cruising at altitude and landing.  They can be replaced after an event but only once the plane as landed safely.  Consequently, an in-depth understanding of the material behaviour under these different loading conditions is needed to produce a successful design.  Of course, we also need a detailed knowledge of the loading conditions, which are influenced not just by the conditions and events during flight but also the way in which the window is attached to the rest of the airplane.  A large and diverse team is needed to ensure that all of this knowledge and understanding is effectively integrated in the design of the cockpit window.  The team is likely to include experts in materials, damage mechanics, structural integrity, aerodynamic loading as well as manufacturing and finance, since the window has to be made and fitted into the aircraft at an acceptable cost.  A similar team will be needed to design the mobile phone casing with the addition of product design and marketing expertise because it is a consumer product.  In other words, engineering is team activity and engineers must be able to function as team members and leaders.

I wrote this post shortly after Clive’s lecture but since then it is has languished in my drafts folder – in part because I thought it was too long and boring.  However, my editor encourages me to write about engineering more often and so, I have dusted it off and shortened it (slightly!).

Image: https://commons.wikimedia.org/wiki/File:Airbus_A350_cockpit_windows_(14274972354).jpg