Tag Archives: experimental mechanics

Industrial uncertainty

Last month I spent almost a week in Zurich.  It is one of our favourite European cities [see ‘A reflection of existentialism‘ on December 20th, 2017]; however, on this occasion there was no time for sight-seeing because I was there for the mid-term meeting of the MOTIVATE project and to conduct some tests and demonstrations in the laboratories of our host, EMPA, the Swiss Federal Laboratories for Materials Science and Technology.  Two of our project partners, Dantec Dynamics GmbH based in Ulm, Germany, and the Athena Research Centre in Patras, Greece, have developed methods for quantifying the uncertainty present in measurements of deformation made in an industrial environment using digital image correlation (DIC) [see ‘256 shades of grey‘ on January 22, 2014].  Digital image correlation is a technique in which we usually apply a random speckle pattern to the object which allows us to track the movement of the object surface over time by searching for the new position of the speckles in the photographs of the object.  If we use a pair of cameras in a stereoscopic arrangement, then we can measure in-plane and out-of-plane displacements.  Digital image correlation is a well-established measurement technique that has become ubiquitous in mechanics laboratories. In previous EU projects, we have developed technology for quantifying uncertainty in in-plane [SPOTS project] and out-of-plane [ADVISE project] measurements in a laboratory environment.  However, when you take the digital image correlation equipment into an industrial environment, for instance an aircraft hangar to make measurements during a full-scale test, then additional sources of uncertainty and error appear. The new technology demonstrated last month allows these additional uncertainties to be quantified.  As part of the MOTIVATE project, we will be involved in a full-scale test on a large section of an Airbus aircraft next year and so, we will be able to utilise the new technology for the first time.

The photograph shows preparations for the demonstrations in EMPA’s laboratories.  In the foreground is a stereoscopic digital image correlation system with which we are about to make measurements of deformation of a section of aircraft skin, supplied by Airbus, which has a speckle pattern on its surface and is about to be loaded in compression by the large servo-hydraulic test machine.

References:

From SPOTS project:

Patterson EA, Hack E, Brailly P, Burguete RL, Saleem Q, Seibert T, Tomlinson RA & Whelan M, Calibration and evaluation of optical systems for full-field strain measurement, Optics and Lasers in Engineering, 45(5):550-564, 2007.

Whelan MP, Albrecht D, Hack E & Patterson EA, Calibration of a speckle interferometry full-field strain measurement system, Strain, 44(2):180-190, 2008.

From ADVISE project:

Hack E, Lin X, Patterson EA & Sebastian CM, A reference material for establishing uncertainties in full-field displacement measurements, Measurement Science and Technology, 26:075004, 2015.

Aircraft inspection

A few months I took this series of photographs while waiting to board a trans-Atlantic flight home.  First, a small ladder was placed in front of the engine.  Then a technician arrived, climbed onto the ladder and spread a blanket on the cowling before kneeling on it and spinning the fan blades slowly.  He must have spotted something that concerned him because he climbed in, lay on the blanket and made a closer inspection.  Then he climbed down, rolled up the blanket and left.  A few minutes later he returned with a colleague, laid out the blanket and they both had a careful look inside the engine, after which they climbed down, rolled up the blanket put it back in a special bag and left.  Five or ten minutes later, they were back with a third colleague.  The blanket was laid out again, the engine inspected by two of them at once and a three-way discussion ensued.  The result was that our flight was postponed while the airline produced a new plane for us.

Throughout this process it appeared that the most sophisticated inspection equipment used was the human eye and a mobile phone.  I suspect that the earlier inspections were reported by phone to the supervisor who came to look for himself before making the decision.  One of the goals of our current research is to develop easy-to-use instrumentation that could be used to provide more information about the structural integrity of components in this type of situation.  In the INSTRUCTIVE project we are investigating the use of low-cost infra-red cameras to identify incipient damage in aerospace structures.  Our vision is that the sort of inspection described above could be performed using an infra-red camera that would provide detailed data about the condition of the structure.  This data would update a digital twin that, in turn, would provide a prognosis for the structure.  The motivation is to improve safety and reduce operating costs by accurate identification of critical damage.

 

Establishing fidelity and credibility in tests & simulations (FACTS)

A month or so ago I gave a lecture entitled ‘Establishing FACTS (Fidelity And Credibility in Tests & Simulations)’ to the local branch of the Institution of Engineering Technology (IET). Of course my title was a play on words because the Oxford English Dictionary defines a ‘fact’ as ‘a thing that is known or proved to be true’ or ‘information used as evidence or as part of report’.   One of my current research interests is how we establish predictions from simulations as evidence that can be used reliably in decision-making.  This is important because simulations based on computational models have become ubiquitous in engineering for, amongst other things, design optimisation and evaluation of structural integrity.   These models need to possess the appropriate level of fidelity and to be credible in the eyes of decision-makers, not just their creators.  Model credibility is usually provided through validation processes using a small number of physical tests that must yield a large quantity of reliable and relevant data [see ‘Getting smarter‘ on June 21st, 2017].  Reliable and relevant data means making measurements with low levels of uncertainty under real-world conditions which is usually challenging.

These topics recur through much of my research and have found applications in aerospace engineering, nuclear engineering and biology. My lecture to the IET gave an overview of these ideas using applications from each of these fields, some of which I have described in past posts.  So, I have now created a new page on this blog with a catalogue of these past posts on the theme of ‘FACTS‘.  Feel free to have a browse!

Spontaneously MOTIVATEd

Some posts arise spontaneously, stimulated by something that I have read or done, while others are part of commitment to communicate on a topic related to my research or teaching, such as the CALE series.  The motivation for a post seems unrelated to its popularity.  This post is part of that commitment to communicate.

After 12 months, our EU-supported research project, MOTIVATE [see ‘Getting Smarter‘ on June 21st, 2017] is one-third complete in terms of time; and, as in all research it appears to have made a slow start with much effort expended on conceptualizing, planning, reviewing prior research and discussions.  However, we are on-schedule and have delivered on one of our four research tasks with the result that we have a new validation metric and a new flowchart for the validation process.  The validation metric was revealed at the Photomechanics 2018 conference in Toulouse earlier this year [see ‘Massive Engineering‘ on April 4th, 2018].  The new flowchart [see the graphic] is the result of a brainstorming [see ‘Brave New World‘ on January 10th, 2018] and much subsequent discussion; and will be presented at a conference in Brussels next month [ICEM 2018] at which we will invite feedback [proceedings paper].  The big change from the classical flowchart [see for example ASME V&V guide] is the inclusion of historical data with the possibility of not requiring experiments to provide data for validation purposes. This is probably a paradigm shift for the engineering community, or at least the V&V [Validation & Verification] community.  So, we are expecting some robust feedback – feel free to comment on this blog!

References:

Hack E, Burguete RL, Dvurecenska K, Lampeas G, Patterson EA, Siebert T & Szigeti E, Steps toward industrial validation experiments, In Proceedings Int. Conf. Experimental Mechanics, Brussels, July 2018 [pdf here].

Dvurcenska K, Patelli E & Patterson EA, What’s the probability that a simulation agrees with your experiment? In Proceedings Photomechanics 2018, Toulouse, March 2018.