Tag Archives: education

Shaping the mind during COVID-19

Books on a window sillIf you looked closely at our holiday bookshelf in my post on August 12th 2020, you might have spotted ‘The Living Mountain‘ by Nan Shepherd [1893-1981] which a review in the Guardian newspaper described as ‘The finest book ever written on nature and landscape in Britain’.  It is an account of the author’s journeys in the Cairngorm mountains of Scotland.  Although it is  short, only 108 pages, I have to admit that it did not resonate with me and I did not finish it.  However, I did enjoy the Introduction by Robert MacFarlane and the Afterword by Jeanette Winterson, which together make up about a third of the book. MacFarlane draws parallels between Shepherd’s writing and one of her contemporaries, the French philosopher,  Maurice Merleau-Ponty [1908-1961] who was a leading proponent of existentialism and phenomenology.  Existentialists believe that the nature of our existence is based on our experiences, not just what we think but what we do and feel; while phenomenology is about the connections between experience and consciousness.  Echoing Shepherd and in the spirit of Merleau-Ponty, MacFarlane wrote in 2011 in his introduction that ‘we have come increasingly to forget that our minds are shaped by the bodily experience of being in the world’.  It made me think that as the COVID-19 pandemic pushes most university teaching on-line we need to remember that sitting at a computer screen day after day in the same room will shape the mind rather differently to the diverse experiences of the university education of previous generations.  I find it hard to imagine how we can develop the minds of the next generation of engineers and scientists without providing them with real, as opposed to virtual, experiences in the field, design studio, workshop and laboratory.

Source:

Nan Shepherd, The Living Mountain, Edinburgh: Canongate Books Ltd, 2014 (first published in 1977 by Aberdeen University Press)

 

35 years later and still working on a PhD thesis

It is about 35 years since I graduated with my PhD.  It was not ground-breaking although, together with my supervisor, I did publish about half a dozen technical papers based on it and some of those papers are still being cited, including one this month which surprises me.  I performed experiments and computer modelling on the load and stress distribution in threaded fasteners, or nuts and bolts.  There were no digital cameras and no computer tomography; so, the experiments involved making and sectioning models of nuts and bolts in transparent plastic using three-dimensional photoelasticity [see ‘Art and Experimental Mechanics‘ on July 17th, 2012].  I took hundreds of photographs of the sections and scanned the negatives in a microdensitometer.  The computer modelling was equally slow and laborious because there were no graphical user interfaces (GUI); instead, I had to type strings of numbers into a terminal, wait overnight while the calculations were performed, and then study reams of numbers printed out on long rolls of paper.  The tedium of the experimental work inspired me to work on utilising digital technology to revolutionise the field of experimental mechanics over the following 15 to 20 years.  In the past 15 to 20 years, I have moved back towards computer modelling and focused on transforming the way in which measurement data are used to improve the fidelity of computer models and to establish confidence in their predictions [see ‘Establishing fidelity and credibility in tests and simulations‘ on July 25th, 2018].  Since completing my PhD, I have supervised 32 students to successful completion of their PhDs.  You might think that was a straightforward process of an initial three years for the first one to complete their research and write their thesis, followed by one graduating every year.  But that is not how it worked out, instead I have had fallow years as well as productive years.  At the moment, I am in a productive period, having graduated two PhD students per year since 2017 – that’s a lot of reading and I have spent much of the last two weekends reviewing a thesis which is why PhD theses are the topic of this post!

Footnote: the most cited paper from my thesis is ‘Kenny B, Patterson EA. Load and stress distribution in screw threads. Experimental Mechanics. 1985 Sep 1;25(3):208-13‘ and this month it was cited by ‘Zhang D, Wang G, Huang F, Zhang K. Load-transferring mechanism and calculation theory along engaged threads of high-strength bolts under axial tension. Journal of Constructional Steel Research. 2020 Sep 1;172:106153‘.

Tacit hurdle to digital twins

Tacit knowledge is traditionally defined as knowledge that is not explicit or that is difficult to express or transfer from someone else.  This description of what it is not makes the definition itself tacit knowledge which is not very helpful.  Management guides resolve this by giving examples, such as aesthetic sense, or innovation and leadership skills which are elusive skills that are hard to explain [see ‘Innovation out of chaos‘ on June 29th 2016 and  ‘Clueless on leadership style‘ on June 14th, 2017].  In engineering, there are a series of skills that are hard to explain or teach, including creative problem-solving [see ‘Learning problem-solving skills‘  on October 24th, 2018], artful design [see ‘Skilled in ingenuity‘ on August 19th, 2015] and elegant modelling [see ‘Credibility is in the eye of the beholder‘ on April 20th, 2016].  In a university course we attempt to lay the foundations for this tacit engineering knowledge; however, much of it is gained in work through experience and becomes regarded by organisations as part of their intellectual assets – the core of their competitiveness and source of their sustainable technology advantage.  In our work on integrated nuclear digital environments, from which digital twins can be spawned, we would like to capture both explicit and tacit knowledge about complex systems throughout their life cycle which will extend beyond the working lives of their designers, builders and operators.  One of the potential advantages of digital twins is as a knowledge management system by duplicating the life of the physical system and thus allowing its safer and cheaper operation in the long-term as well as its eventual decommissioning.   However, besides the very nature of tacit knowledge that makes its capture difficult, we are finding that its perceived value as an intellectual asset renders stakeholders reluctant to discuss it with us; never mind consider how it might be preserved as part of a digital twin.  Research has shown that tacit knowledge sharing is influenced by environmental factors including national culture, leadership characteristics and social networks [Cai et al, 2020].  I suspect that all of these factors were present in the heyday of the UK civil nuclear power industry when it worked together to construct advanced and complex systems; however, it has not built a power station since 1995 and, at the moment, new power stations are cancelled more often than built, which has almost certainly depressed all of these factors.  So, perhaps we should not be surprised by the difficulties encountered in establishing an integrated nuclear digital environment despite its importance for the future of the industry.

Reference: Cai, Y., Song, Y., Xiao, X. and Shi, W., 2020. The Effect of Social Capital on Tacit Knowledge-Sharing Intention: The Mediating Role of Employee Vigor. SAGE Open, 10(3), p.2158244020945722.

Success is to have made people wriggle to another tune

Shortly before the pandemic started to have an impact in the UK, I went to our local second-hand bookshop and bought a pile of old paperbacks to read.  One of them was ‘Daisy Miller and Other Stories’ by Henry James (published in 1983 as Penguin Modern Classic).  The title of this post is a quote from one of the ‘other stories’, ‘The Lesson of the Master’, which was first published in 1888.  ‘Success is to have made people wriggle to another tune’ is said by the successful fictional novelist, Henry St George as words of encouragement to the young novelist Paul Ovett.  It struck a chord with me because I think it sums up academic life. Success in teaching is to inspire a new level of insight and way of thinking amongst our students; while, success in research is to change the way in which society, or at least a section of it, thinks or operates, i.e. to have made people wriggle to another tune.