Tag Archives: education

Feedback is a gift

In academic life you get used to receiving feedback, including plenty of negative feedback when your grant proposal is declined by a funding agency or your manuscript is rejected by the editor of a journal.  We are also subject to annual performance reviews which can be difficult if all of your proposals and manuscripts have been rejected.  So, how should we respond to negative feedback?

The Roman philosopher, Marcus Aurelius is credited with the saying ‘Everything we hear is an opinion, not a fact’, which perhaps implies we should not take the negative feedback too seriously, or at least we should look for some evidence.

Tasha Eurich has suggested we should mine it for insight and harness it for improvement but without incurring collateral damage to your self-confidence.  He recommends a five-point approach, based on empirical evidence:

  1. Don’t rush to react
  2. Gather more evidence
  3. Find a harbinger
  4. Don’t be a lonely martyr but engage in dialogue
  5. Remember that change is not the only option; you can accept your weaknesses, share them and work around them.

If you are the one giving the negative feedback then it is worth remembering the stages of response to bad news are denial, anger, bargaining, depression and acceptance.  Hopefully, the feedback will not induce the full range of response but, when it does, you should not be surprised.

See earlier posts on giving [‘Feedback on feedback‘ on June 28th, 2017] and receiving student feedback [‘Deep long-term learning‘ on April 28th, 2018].

 

Source: Tasha Eurich, ‘The right way to respond to negative feedback’, HBR, May 31st, 2018.

Laboratory classes thirty years on

Henry Lea Laboratory, The University of Sheffield in the 1960s

I have happy memories of teaching laboratory classes at the University of Sheffield in the mid 1980s and 1990s in the Henry Lea Laboratory.  The laboratory was crammed full of equipment for experiments in mechanics of materials.  We conducted the practical classes on a limited selection of test machines that stood around a set of benches in the centre of the laboratory on which were a series of bench-top experiments for undergraduates.  The outer reaches of the laboratory were packed with test machines of various shapes and sizes that were the domain of the research students and staff.  So, undergraduate students were privileged to conduct their laboratory classes surrounded by research activity – this was one of the advantages of attending a research-intensive university to study engineering.  However, this is not the experience that modern students gain from laboratory classes.  Sheffield, like Liverpool, and many other research-intensive universities has purpose-built teaching laboratories that provide modern spacious facilities for teaching and learning but also segregate undergraduates from the research business of the university.  In the UK, the increase in student numbers, as we moved towards 50% participation in higher education, was probably a prime driver for the design and construction of these facilities.  However, often the growth in student numbers exceeds the planned capacity of the teaching laboratories and the student experience is reduced by being in a group of five or six with only one or two of them being able to get hands-on experience at the same time.  To overcome this problem, I have used practical exercises as homework assignments that can be performed in the kitchen at home by first year students.  These were initially designed for the MOOC on thermodynamics that I developed a few years ago but they work equally well for undergraduate students and allow individuals to gain experience of conducting a simple experiment, recording and processing data, and write a short report about their findings [see post on ‘Blending learning environments‘ on November 14th, 2018 and ‘Slow down time to think [about strain energy]‘ on March 8th, 2017].  I have found that the participation rate is about the same as for traditional laboratory classes but different because students can learn from their mistakes in private and acquire some experimental skills [1].  However, it is a long way from conducting labs for small cohorts in a laboratory where world-class research is in progress.

Reference:

1. Patterson EA, Using everyday examples to engage learners on a massive open online course, IJ Mechanical Engineering Education, doi: 10.1177/0306419018818551, 2018.

Knowledge explosions

Photo credit: Tom

When the next cohort of undergraduate students were born, Wikipedia had only just been founded [January 2001] and Google had been in existence for just over a decade [since 1998].  In their lifetime, the number of articles on Wikipedia has grown to nearly 6 million in the English language, which is equivalent to 2,500 print volumes of the Encyclopedia Britannica, and counting all language editions there are 48 million articles.  When Leonardo Da Vinci was born in 1452, Johan Gutenberg had just published his first Bible using moveable type.  By the time Leonardo Da Vinci was 20 years old, about 15 million books had been printed which was more than all of the scribes in Europe had produced in the previous 1500 years.  Are these comparable explosions in the availability of knowledge?  The proportion of the global population that is literate has changed dramatically from about 2%, when Leonardo was alive, to over 80% today which probably makes the arrival of the internet, Wikipedia and other online knowledge bases much more significant than the invention of the printing press.

Today what matters is not what you know but what you can do with the knowledge because access to the internet via your smart phone has made memorisation redundant.

Pluralistic ignorance

This semester I am teaching an introductory course in Thermodynamics to undergraduate students using a blended learning approach [see ‘Blended learning environments‘ on November 14th, 2018].  The blend includes formal lectures, example classes, homework assignments, assessed coursework questions and an on-line course, which I delivered as a MOOC a couple of years ago [see ‘Engaging learners on-line‘ on May 25th, 2016].  It is not unusual in a large class, nearly two hundred students this year, that no one asks questions during the lecture; although, at the end of each lecture and example class, a small group of students with questions always forms.  The on-line course has extensive opportunities for asking questions and discussing issues with the instructor and fellow learners.  These opportunities  were used heavily when the course was offered as a MOOC  with 6600 comments posted or 1 every 7.7 minutes!  However, this year the undergraduates have not made any on-line comments and it was a similar situation last year.  Is this a case of pluralistic ignorance?  The term was coined by psychologists Daniel Katz and Floyd Henry Allport in 1931 to describe students who pretend to understand everything explained in class and don’t ask any questions because they believe everyone else in the class has understood everything and they don’t want to damage their reputation with their peers.  Perhaps we have all done it and been very grateful when someone has asked the question that we wanted to ask but did not dare.  Would be it ethical to pretend to be a student and post questions on-line that I know from the MOOC they are likely to want to ask?

Sources:

Patterson EA, Using everyday engineering examples to engage learners on a massive open online course, IJ Mechanical Engineering Education, in press.

Katz D & Allport FH, Students’ attitude, Syracuse, NY: Craftsmann, 1931.

Origgi G, Reputation: what it is and why it matters, Princeton, NJ: Princeton University Press, 2018.

Image: Author speaking at National Tsing Hua University, Taiwan