Tag Archives: aerospace

Aorta: structure to rupture

Decorative image from a video showing predicted flow through aortic valve and resultant stress in leaflets of valveRegular readers have probably already realised that I have very broad interests in engineering from aircraft and power stations [see ‘Conversations about engineering over dinner and haircut‘ on February 16th, 2022] to nanoparticles interacting with cells [see ‘Fancy a pint of science‘ on April 27th, 2022].  So, it will come as no surprise to hear that I gave a welcome address to a workshop on ‘Aorta: Structure to Rupture‘ last week.  The workshop was organised in Liverpool by one of my colleagues, with sponsorship from the British Heart Foundation, and I was invited to welcome delegates in my capacity as Dean of the School of Engineering.  It was exciting on two levels: speaking, for the first time in more than two years, to an audience who had travelled from around the world to discuss research. And because the topic was closely associated with cardiac dynamics, which is a field that I worked in for nearly twenty years until around 2006.  I was part of an interdisciplinary team modelling the fluid-structure interaction in the aortic valve as it opens when blood is pumped through it by the heart and then closes to prevent back flow into the heart.  The team dispersed after I moved to the USA in 2004.  So speaking to the workshop last week was something of a trip down memory lane for me and led me to look up our last publication in the field.  I was surprised to find it was cited seven times last year.

The image in the thumbnail is a snapshot from a video showing the predicted time-varying distribution of blood flow through the aortic valve and the resultant distribution of stress in the leaflets of the valve during a heart beat.  The simultation is described in our last publication in cardiac dynamics: Carmody, C. J., Burriesci, G., Howard, I. C., & Patterson, E. A.,  An approach to the simulation of fluid–structure interaction in the aortic valve. J. Biomechanics, 39(1), 158-169, 2006.

Dwelling in the present

Photograph of St Michael's Church, Stoke Gifford

St Michael’s Church, Stoke Gifford

I have been visiting the Airbus site at Filton near Bristol since the mid-1990s. It is where the wings for new designs of aircraft are developed and tested. My involvement has been in the developing of techniques for measuring strain in aircraft structures during static and fatigue tests. At the moment, we are working on methods to integrate fields of measurements with computational predictions of stress and strain [see ‘Jigsaw puzzling without a picture‘ on October 27th, 2021]. I frequently travel by train to Bristol Parkway Station and walk past the church in the photograph without even noticing it despite it being next to the station. To be fair, the view of it from the station entrance is obscured by a billboard. However, last week as I walked back to the station with a half-hour to spare, I noticed a gate leading into a churchyard. I slipped through the gate thinking that perhaps there might be an interesting old church to explore but it was locked and I had to be satisfied with a stroll around the churchyard. I was slightly shocked to realise the church, and the village green beyond it, had been hidden in full view for more than thirty years of walking within a few tens of metres of it perhaps once a month. I had always been too focussed on the research that I was heading to Airbus to discuss, or too tired at the end of a day, to notice the things around me. Our senses flood our brains with information most of which is ignored by our conscious minds that are busy time traveling through past memories or looking into the future [see ‘Time travel and writing history‘ on March 23rd, 2022].  However, there is pleasure to be gained by dwelling in the present and exploring the sensory experience flooding into our brains.  As Amy Liptrot commented in her book ‘The Outrun‘, “the more I take the time to look at things, the more rewards and complexity I find”.

Sources:

Enuma Okoro, The Pleasure Principle, FT Weekend, 19 February/20 February 2022.

Mia Levitan, Descent into digital distraction, FT Weekend, 5 March/6 March 2022.

 

Conversations about engineering over dinner and a haircut

For decorative purposes: colour contour map of a face mask produced using fringe projectionRecently, over dinner, someone I had just met asked me what type of engineering I do. I always find this a difficult question to answer because I am sure that they are just being polite and do not want to hear any technical details but I find it hard to give an interesting answer without diving into details. Earlier the same day I had given a lecture on thermodynamics to about 300 undergraduate students so I told my inquisitor about this experience and explained that thermodynamics was the science of energy and its transformation into different forms. Then, I muttered something about being interested in making and using measurements to ensure that computational models of aircraft and nuclear power stations are reliable and the conversation quickly moved on. A week or so earlier, I was having my hair cut when the barber asked me a similar question about what I did and I told him that I was a professor of engineering which led to a conversation about robots. We speculated about whether we would ever lose our jobs to robots and decided that we were both fairly secure against that threat. There is a high degree of creativity in both of our roles – while I always ask for the same haircut, my hair is in a different state every time I visit the barbers’ and I leave looking slightly different every time. I don’t think that I would like the uniformity that a row of robots in the barbers’ shop might produce. And, then there is the conversation during the haircut. A robot would need to pass the Turing test, i.e., to exhibit intelligent behaviour indistinguishable from a human, which no computer has yet achieved or is likely to do so in our lifetime, at least not a cost that would allow them to replace barbers. The same holds for professors – the shift to delivering lectures online during the pandemic might have made some professors worry that their jobs were at risk as recorded lectures replaced live performances; however, student feedback tells us that students have a strong preference for on-campus teaching and the high turnout for my thermodynamics lectures supports that conclusion.

Footnotes:

For a new website I was asked to describe my research interests in about 25 words and used the following: ‘the acquisition of information-rich measurement data and its use to develop digital representations of complex systems in the aerospace, biological and energy sectors’.  Fine for a website but not dinner conversation! 

There have been some attempts to build a robot that cut your hair, for example see this video

Image shows a colour contour map describing the shape of a facemask produced using fringe projection which could be used as part of the vision system for a robotic barber.  For more information on fringe projection see: Ortiz, M. H., & Patterson, E. A. (2005). Location and shape measurement using a portable fringe projection system. Experimental mechanics, 45(3), 197-204 or watch this video from the INDUCE project that was active from 1998 to 2001.

Happy New Year!

Decorative photograph of sculpture of a skeletal person leading a skeletal dinosaurThis year I have written about 20,000 words in 52 posts (including this one); and, since this is the last post of the year, I thought I would take a brief look back at what has preoccupied me in 2021.  Perhaps, not surprisingly the impact of the coronavirus on our lifestyle has featured regularly – almost every week for a month between mid-March and mid-April when we were in lockdown in the UK.  However, the other topics that I have written about frequently are my research on the dynamics of nanoparticles and, in the last six months, on dealing with uncertainty in digital engineering and decision making.  I have also returned several times to innovation processes and transitioning lab-based research into industry.  While following the COP26 in early November, I wrote a series of three posts focussed on energy consumption and the paradigm shifts required to slow down climate change.  There are some connections between these topics: viruses are nanoparticles whose transport and dynamics we do not fully understand; and, digital engineering tools are being used to explore zero-carbon approaches to, for example, energy generation and air transport.  The level of complexity, innovation and urgency associated with developing solutions to these challenges mean that there are always some unknowns and uncertainty when making associated decisions.

The links below are grouped by the topics mentioned above.  I expect there will be more on all of these topics in 2022; however, the topic of next week’s post is unknown because I have not written any posts in advance.  I hope that the uncertainty about the topic of the next post will keep you reading in 2022! 

Coronavirus pandemic: ‘Distancing ourselves from each other‘ on January 13th, 2021; ‘On the impact of writing on well-being‘ on March 3rd, 2021; ‘Collegiality as a defence against pandemic burnout‘ on March 24th, 2021; ‘It’s tiring looking at yourself‘ on March 31st, 2021; ‘Switching off and walking in circles‘ on April 7th, 2021; ‘An upside to lockdown‘ on April 14th, 2021; ‘A brief respite in a long campaign to overcome coronavirus‘ on June 23rd, 2021; and ‘It is hard to remain positive‘ November 3rd 2021.

Energy and climate change: ‘When you invent the ship, you invent the shipwreck‘ on August 25th, 2021; ‘It is hard to remain positive‘ November 3rd 2021; ‘Where we are and what we have‘ on November 24th, 2021; ‘Disruptive change required to avoid existential threats‘ on December 1st, 2021; and ‘Bringing an end to thermodynamic whoopee‘ on December 8th, 2021.

Innovation processes: ‘Slowly crossing the valley of death‘ on January 27th, 2021; ‘Out of the valley of death into a hype cycle?‘ on February 24th, 2021; ‘Innovative design too far ahead of the market?‘ on May 5th, 2021 and ‘Jigsaw puzzling without a picture‘ on October 27th, 2021.

Nanoparticles: ‘Going against the flow‘ on February 3rd, 2021; ‘Seeing things with nanoparticles‘ on March 10th, 2021; and ‘Nano biomechanical engineering of agent delivery to cells‘ on December 15th, 2021.

Uncertainty: ‘Certainty is unattainable and near-certainty is unaffordable‘ on May 12th, 2021; ‘Neat earth objects make tomorrow a little less than certain‘ on May 26th, 2021; ‘Negative capability and optimal ambiguity‘ on July 7th, 2021; ‘Deep uncertainty and meta ignorance‘ on July 21st, 2021; ‘Somethings will always be unknown‘ on August 18th, 2021; ‘Jigsaw puzzling without a picture‘ on October 27th, 2021; and, ‘Do you know RIO?‘ on November 17th, 2021.