Category Archives: Soapbox

You can only go there in your head

“Inner space and outer space are similar, aren’t they really?  You’re never going to get to the edge of the universe in a spaceship.  You might as well try going on a bus.  You can only go there in your head.”  This is a quote from David Hockney in ‘Spring Cannot Be Cancelled‘  by David Hockney and Martin Gayford.  It’s a beautiful book.  Full of thought-provoking insights and recent artwork by Hockney painted in Normandy mainly during the pandemic.  I read it last month while in the Yorkshire Dales [see ‘Walking the hills‘ on April 13th 2022].  Hockney writes about his need to paint.  He finds it utterly absorbing and endlessly sustaining.  Gayford compares this need and experience to the work of American psychologist, Mihaly Csiksczentmihalyi [see ‘Slow-motion multi-tasking leads to productive research‘ on September 19, 2018] who wrote about concentration so intense that there is no spare capacity to think about anything else, your self-consciousness disappears and you lose your sense of time leading to a deep sense of happiness and well-being.  I cannot paint but I can achieve something approaching a similiar state when I am writing.

Source:

Martin Gayford and David Hockney, Spring cannot be cancelled – David Hockney in Normandy, London: Thames & Hudson, 2021.

Existential connection between capitalism and entropy

global average temperature with timeAccording to Raj Patel and Jason W Moore, in his treatise ‘Das Kapital’ Karl Marx defined capitalism as combining labour power, machines and raw materials to produce commodities that are sold for profit which is re-invested in yet more labour power, machines and raw materials.  In other words, capitalism involves processes that produce profit from an economic perspective, and from a thermodynamic perspective produce entropy because the second law of thermodynamics demands that all real processes produce entropy.  Thermodynamically, entropy usually takes the form of heat dissipated into the environment which raises the temperature of the environment; however, it can also be interpreted as an increase in the disorder of a system [see ‘Will it all be over soon?’ on November 2nd, 2016].  The ever-expanding cycle of profit being turned into capital implies that the processes of producing commodities must also become ever larger.  The ever-expanding processes of production implies that the rate of generation of entropy also increases with time.  If no profit were reinvested in economic processes then the processes would still increase the entropy in the universe but when profit is re-invested and expands the economic processes then the rate of entropy production increases and the entropy in the universe increases exponentially – that’s why the graphs of atmospheric temperature curve upwards at an increasing rate since the industrial revolution.  As if that is not bad enough, the French social economist, Thomas Piketty has proposed that the rate of return on capital, “r” is always greater than the rate of growth of the economy, “g” in his famous formula “r>g”.  Hence, even with zero economic growth, the rate of return will be above zero and the level of entropy will rise exponentially.  Piketty identified inequality as a principal effect of his formula and suggested that only cataclysmic events, such as world wars or revolutions, can reduce inequality.  The pessimistic thermodynamicist in me would conclude that an existential cataclysmic event might be the only way that this story ends.

Sources

Raj Patel & Jason W. Moore, A history of the world in seven cheap things, London: Verso, 2018.

Thomas Piketty, A brief history of equality, translated by Steven Rendall, Harvard: Belknap, 2022.

Diane Coyle, Piketty the positive, FT Weekend, 16 April/17 April 2022.

Image: Global average near surface temperature since the pre-industrial period from www.eea.europa.eu/data-and-maps/figures/global-average-near-surface-temperature

Fancy a pint of science?

In September I am planning to initiate a new research project on the interaction of bacteria with cellular and hard surfaces.  It is in collaboration with Jude Curran and is co-funded by Unilever and the Biotechnology and Biological Sciences Research Council.  We have already used the optical method of caustics in a microscope to track and characterise the movement of synthetic nanoparticles as small as 3 nm in an array of biologically-relevant solutions [see ‘Nano biomechanical engineering of agent delivery to cells’ on December 15th, 2021].  We have also used the same technique to characterise and quantify the motion and growth of bacteria in solutions.  Now, we plan to use caustic signatures as a label-free tracking technology for pre-clinical testing of antimicrobial solutions and coatings.  We plan to start by considering binding and removal of viral particles and bacterial spores from hard and soft laundry surfaces using various bacterial species, including Staph aureus which is responsible for laundry malodour; before progressing to the interaction of bacteria with human oral and skin cell cultures.  We are in the process of recruiting a suitable PhD student so if you are interested or know someone who might be suitable then get in touch.  If you want to learn more about our tracking technology and fancy a pint of science, then join us in Liverpool in May for part of the world’s largest festival of public science.  I will be talking about ‘Revealing the invisible: real-time motion of virus particles’  on May 10th at 7.30pm on Leaf of Bold Street.

Liverpool Pint of Science programme

UK Pint of Science programme

 

Intelligent openness

Photo credit: Tom

As an engineer and an academic, my opinion as an expert is sought often informally but less frequently formally, perhaps because I am reluctant to offer the certainty and precision that is so often expected of experts and instead I tend to highlight the options and uncertainties [see ‘Forecasts and chimpanzees throwing darts’ on September 2nd 2020].  These options and uncertainties will likely change as more information and knowledge becomes available.  An expert, who changes their mind and cannot offer certainty and precision, tends not to be welcomed by society, and in particular the media, who want simple statements and explanations.  One problem with offering certainty and precision as an expert is that it might appear you are part of a technocratic subset seeking to impose their values on the rest of society, as Mary O’Brien has argued.  The philosopher Douglas Walton has suggested that it is improper for experts to proffer their opinion when there is a naked assertion that the expert’s identity warrants acceptance of their opinion or argument.  Both O’Brien and Walton have argued that expert authority is legitimate only when it can be challenged, which is akin to Popper’s approach to the falsification of scientific theories – if it is not refutable then it is not science.  An expert’s authority should be acceptable only when it can be challenged and Onora O’Neill has argued that trustworthiness requires intelligent openness.  Intelligent openness means that the information being used by the expert is accessible and useable; the expert’s decision or argument is understandable (clearly explained in plain language) and assessable by someone with the time, expertise and access to the detail so that they can attempt to refute the expert’s statements.  In other words, experts need to be  transparent and science needs to be an open enterprise.

Sources:

Burgman MA, Trusting judgements: how to get the best out of experts, Cambridge: Cambridge University Press, 2016.

Harford T, How to make the world add up: 10 rules for thinking differently about numbers, London: Bridge Street Press, 2020.

O’Brien M, Making better environmental decisions: an alternative to risk assessment, Cambridge MA: MIT Press, 2000.

Walton D, Appeal to expert opinion: arguments from authority, University Park PA: Pennsylvania State University Press, 1997.

Royal Society, Science as an open enterprise, 2012: https://royalsociety.org/topics-policy/projects/science-public-enterprise/report/