Category Archives: structures

Archive video footage from EU projects

This week I am in the US presenting work from our EU projects INSTRUCTIVE and MOTIVATE at the Annual Conference and Exposition of the Society for Experimental Mechanics.  Although the INSTRUCTIVE project was completed at the end of December 2018, the process of disseminating and exploiting the research will go on for some time.  The capability to identify the initiation of cracks when they are less than 1mm long and to track their propagation is a key piece of technology for DIMES project in which we are developing an integrated system for monitoring the condition of aircraft structures.  We are in the last twelve months of the MOTIVATE project and we have started producing video clips about the technology that is being developed.  So, if you missed my presentations at the conference in the US then you can watch the videos online using the links below 😉.

We have been making videos describing the outputs of our EU project for about 20 years; so, if you want to see some vintage footage of me twenty years younger then watch a video from the INDUCE project that was active from 1998 to 2001.

MOTIVATE videos: Introduction; Industrial calibration of DIC measurements using a calibration plate or using an LCD screen

The MOTIVATE project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 754660.

Image: Peppermill Hotel in Reno, Nevada where the conference is being held.

 

Crack tip plasticity in reactor steels

Amplitude of temperature in steel due to a cyclic load with a crack growing from left to right along the horizontal centre line with the stress concentration at its tip exhibiting the peak values. The wedge shapes in the left corners are part of the system.

At this time of year the flow into my inbox is augmented daily by prospective PhD students sending me long emails describing how their skills, qualifications and interests perfectly match the needs of my research group, or sometimes someone else’s group if they have not been careful in setting up their mass mailing.  At the moment, I have four PhD projects for which I am looking for outstanding students; so, because it will help prospective students and might interest my other readers but also because I am short of ideas for the blog, I plan to describe one project per week for the next month.

The first project is about the effect of hydrogen on crack tip plasticity in reactor steels.  Fatigue cracks grow in steels by coalescing imperfections in the microstructure of the material until small voids are formed in areas of high stress.  When these voids connect together a crack is formed.  Repeated loading and unloading of the material provides the energy to move the imperfections, known as dislocations, and geometric features in structures are stress concentrators which focus this energy causing cracks to be formed in their vicinity.  The movement of dislocations causes permanent, or plastic deformation of the material.  The sharp geometry of a crack tip becomes a stress concentrator creating a plastic zone in which dislocations pile up and voids form allowing the crack to extend [see post on ‘Alan Arnold Griffith‘ on April 26th, 2017].  It is possible to detect the thermal energy released during plastic deformation using a technique known as thermoelastic stress analysis [see ‘Counting photons to measure stress‘ on November 18th 2015] as well as to measure the stress field associated with the propagating crack [1].  One of my current PhD students has been using this technique to investigate the effect of irradiation damage on the growth of cracks in stainless steel used in nuclear reactors.  We use an ion accelerator at the Dalton Cumbrian Facility to introduce radiation damage into specimens the size of a postage stamp and afterwards apply cyclic loads and watch the fatigue crack grow using our sensitive infra-red cameras.  We have found that the irradiation reduced the rate of crack growth and we will be publishing a paper on it shortly [and a PhD thesis].  In the new project, our industrial sponsors want us to explore the effect of hydrogen on crack growth in irradiated steel, because the presence of hydrogen is known to accelerate fatigue crack growth [2] which is believe to happen as a result of hydrogen atoms disrupting the formation of dislocations at the microscale and localising plasticity at crack tip on the mesoscale.  However, these ideas have not been demonstrated in experiments, so we plan to do this using thermoelastic stress analysis and to investigate the combined influence of hydrogen and irradiation by developing a process for pre-charging the steel specimens with hydrogen using an electrolytic cell and irradiating them using the ion accelerator.  Both hydrogen and radiation are present in a nuclear reactor and hence the results will be relevant to predicting the safe working life of nuclear reactors.

The PhD project is fully-funded for UK and EU citizens as part of a Centre for Doctoral Training and will involve a year of specialist training followed by three years of research.  For more information following this link.

References:

  1. Yang, Y., Crimp, M., Tomlinson, R.A., Patterson, E.A., 2012, Quantitative measurement of plastic strain field at a fatigue crack tip, Proc. R. Soc. A., 468(2144):2399-2415.
  2. Matsunaga, H., Takakuwa, O., Yamabe, J., & Matsuoka, S., 2017, Hydrogen-enhanced fatigue crack growth in steels and its frequency dependence. Phil. Trans. R. Soc. A, 375(2098), 20160412

In Einstein’s footprints?

Grand Hall of the Guild of Carpenters, Zurich

During the past week, I have been working with members of my research group on a series of papers for a conference in the USA that a small group of us will be attending in the summer.  Dissemination is an important step in the research process; there is no point in doing the research if we lock the results away in a desk drawer and forget about them.  Nowadays, the funding organisations that support our research expect to see a plan of dissemination as part of our proposals for research; and hence, we have an obligation to present our results to the scientific community as well as to communicate them more widely, for instance through this blog.

That’s all fine; but nevertheless, I don’t find most conferences a worthwhile experience.  Often, there are too many uncoordinated sessions running in parallel that contain presentations describing tiny steps forward in knowledge and understanding which fail to compel your attention [see ‘Compelling presentations‘ on March 21st, 2018].  Of course, they can provide an opportunity to network, especially for those researchers in the early stages of their careers; but, in my experience, they are rarely the location for serious intellectual discussion or debate.  This is more likely to happen in small workshops focussed on a ‘hot-topic’ and with a carefully selected eclectic mix of speakers interspersed with chaired discussion sessions.

I have been involved in organising a number of such workshops in Glasgow, London, Munich and Shanghai over the last decade.  The next one will be in Zurich in November 2019 in Guild Hall of Carpenters (Zunfthaus zur Zimmerleuten) where Einstein lectured in November 1910 to the Zurich Physical Society ‘On Boltzmann’s principle and some of its direct consequences‘.  Our subject will be different: ‘Validation of Computational Mechanics Models’; but we hope that the debate on credible models, multi-physics simulations and surviving with experimental data will be as lively as in 1910.  If you would like to contribute then download the pdf from this link; and if you just like to attend the one-day workshop then we will be announcing registration soon and there is no charge!

We have published the outcomes from some of our previous workshops:

Advances in Validation of Computational Mechanics Models (from the 2014 workshop in Munich), Journal of Strain Analysis, vol. 51, no.1, 2016

Strain Measurement in Extreme Environments (from the 2012 workshop in Glasgow), Journal of Strain Analysis, vol. 49, no. 4, 2014.

Validation of Computational Solid Mechanics Models (from the 2011 workshop in Shanghai), Journal of Strain Analysis, vol. 48, no.1, 2013.

The workshop is supported by the MOTIVATE project and further details are available at http://www.engineeringvalidation.org/4th-workshop

The MOTIVATE project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 754660.

Nuclear winter school

I spent the first full-week of January 2019 at a Winter School for a pair of Centres for Doctoral Training focussed on Nuclear Energy (see NGN CDT & ICO CDT).  Together the two centres involve eight UK universities and most of the key players in the UK industry.  So, the Winter School offers an opportunity for researchers in nuclear science and engineering, from academia and industry, to gather together for a week and share their knowledge and experience with more than 80 PhD students.  Each student gives a report on the progress of their research to the whole gathering as either a short oral presentation or a poster.  It’s an exhausting but stimulating week for everyone due to both the packed programmme and the range of subjects covered from fundamental science through to large-scale engineering and socio-economic issues.

Here are a few things that caught my eye:

First, the images in the thumbnail above which Paul Cosgrove from the University of Cambridge used to introduce his talk on modelling thermal and neutron fluxes.  They could be from an art gallery but actually they are from the VTT Technical Research Centre of Finland and show the geometry of an advanced test reactor [ATR] (top); the rate of collisions in the ATR (middle); and the neutron density distribution (bottom).

Second, a great app for your phone called electricityMap that shows you a live map of global carbon emissions and when you click on a country it reveals the sources of electricity by type, i.e. nuclear, gas, wind etc, as well as imports and exports of electricity.  Dame Sue Ion told us about it during her key-note lecture.  I think all politicians and journalists need it installed on their phones to check their facts before they start talking about energy policy.

Third, the scale of the concrete infrastructure required in current designs of nuclear power stations compared to the reactor vessel where the energy is generated.  The pictures show the construction site for the Vogtle nuclear power station in Georgia, USA (left) and the reactor pressure vessel being lowered into position (right).  The scale of nuclear power stations was one of the reasons highlighted by Steve Smith from Algometrics for why investors are not showing much interest in them (see ‘Small is beautiful and affordable in nuclear power-stations‘ on January 14th, 2015).  Amongst the other reasons are: too expensive (about £25 billion), too long to build (often decades), too back-end loaded (i.e. no revenue until complete), too complicated (legally, economically & socially), too uncertain politically, too toxic due to poor track record of returns to investors, too opaque in terms of management of industry.  That’s quite a few challenges for the next generation of nuclear scientists and engineers to tackle.  We are making a start by creating design tools that will enable mass-production of nuclear power stations (see ‘Enabling or disruptive technology for nuclear engineering?‘ on January 28th, 2015) following the processes used to produce other massive engineering structures, such as the Airbus A380 (see Integrated Digital Nuclear Design Programme); but the nuclear industry has to move fast to catch up with other sectors of the energy business, such as gas-fired powerstations or wind turbines.  If it were to succeed then the energy market would be massively transformed.