Category Archives: uncertainty

Work, rest and play in Smallville

Decorative imageI am comfortable with the lack of certainty about us not being in a simulation [see ‘Are we in a simulation?‘ on September 28, 2022].  However, I know that some of you would prefer not to consider this possibility.  Unfortunately, recently published research has likely increased the probability that we are in a simulation because the researchers set up a simulation of a community of human-like agents called Smallville [Park et al, 2023].  The generative agents fuse large language models used in artificial intelligence with computational, interactive agents who eat, sleep, work and play just like humans and coalesce into social groups.  The simulation was created as a research tool for studying human interactions and emergent social behaviour which completely concurs with the argument for us already being part of a simulation created to study social behaviour.  Smallville only had 25 virtual inhabitants but the speed of advances in artificial intelligence and computational tools perhaps implies that a simulation of billions of agents (people) is not as far in the future as we once thought thus making it more credible that we are in a simulation.  The emergent social behaviour observed in Smallville suggests that our society is essentially a self-organising complex system that cannot be micro-managed from the centre.

Sources:

Oliver Roeder, Keeping up with the ChatGPT neighbours, FT Weekend, August 26/27 2023.

Camilla Cavendish, Charities could lead new age of community spirit, FT Weekend, August 26/27 2023.

Park JS, O’Brien JC, Cai CJ, Morris MR, Liang P, Bernstein MS. Generative agents: Interactive simulacra of human behavior. arXiv preprint arXiv:2304.03442. 2023.

Image: Ceramic tile by Pablo Picasso in museum in Port de Sóller Railway Station, Mallorca.

 

Conflicted about cost-benefit analysis of international conferences

Decorative image of an aircraftLast week I wrote about my stimulating experience of attending a conference in Orlando, Florida and presenting our recent research to the experimental mechanics community for the first time in four years.  Whilst there, I was conscious of the ecological footprint of my trip – the venue was making extensive use of single use plastics on a scale that surprised me.  However, my trans-Atlantic flight had an order of magnitude larger impact.  It is difficult to find a reliable estimate of the carbon emissions for a return flight between the UK and Florida but 1,267 kg CO2 from the Guardian newspaper website lies between a lower bound estimate of 856 kg CO2 from iata.org and and an upper bound of 2,200 kg CO2 from myclimate.org.  This is equivalent to about one-sixth of my annual domestic carbon footprint of 9,000 kg CO2 using the calculator on the World Wildlife Fund website.  The UK average footprint is 9,300 kg CO2/capita and the global average is 6,300 kg CO2/capita.  The question is whether it is justifiable to generate additional emissions to attend a research conference?  The prime motivation of the research that I presented is to support the development of aircraft which are lighter with less embedded carbon and use less energy while also having a longer useful life.  Ultimately, supporting the aviation industry to achieve its target of zero-net emissions by 2050.  The carbon emissions of the global aviation industry in 2021 were 720 Mt CO2 [see IEA report]; hence, if my research contributes towards one hundredth of a percent reduction in these emissions then this would be 72,000 kg CO2/year.  It seems reasonable to cause a tenth of this annual saving each year (7,200 kg CO2/year) for the next ten years in order to deliver the required technology, i.e., committing one year’s savings to achieve an annual saving in perpetuity.  The problem is that I do not have a reliable estimate of the carbon footprint of my research activities.  I supervised an MSc student a couple of years ago who conducted a carbon audit of the School of Engineering and estimated the carbon emissions due to research alone to be 61,531 kg CO2 excluding heating, lighting and travel.  My group might be responsible for 10% of these emissions, i.e., about 6000 kg CO2; hence, adding about 1,200 kg CO2 to interact with other researchers at a conference seems reasonable and within a budget of 7,200 kg CO2. However, it is difficult to find reliable data to use in estimating carbon emissions for these activities and so perhaps the key conclusion is that we need more and better carbon audits to allow more informed decision-making.  In the meantime, perhaps attendence at an international conference once every four years is sufficient.

Image: Tayeb Mezahdia

Virtual digitalism

Decorative image of 10 micron spheres in nanoscopeSome months ago I wrote about the likelihood that we are in a simulation [see ‘Are we in a simulation?‘ on September 28th, 2022] and that we cannot be sure whether are or not.  For some people, this will raise the question that if we are in a simulation, then what is real?  In his book, Reality+, David J Chalmers provides a checklist of properties possessed by real things, namely: existence, causal powers, mind-independence, non-illusoriness and genuineness.  The possession of these properties could be established by answering the five questions in the box below and we would expect real objects to possess one or more of these properties.  Objects that are found in a virtual world generated by a simulation are real objects because they have at least one, and often many of these properties, such as causal powers and independence from our minds.  We can consider them to be digital objects, or structures of binary information or bits.  This leads to a form of the ‘It-from-bit’ hypothesis because it implies that molecules are made of atoms, atoms are made of quarks, and quarks are made of bits – unless of course we are not in a simulation but we will probably never know for certain.

Source: David J Chalmers, Reality+: virtual worlds and the problems of philosophy, Penguin, 2022.

Image shows a self-assembly of 10 micron spheres viewed out-of-focus in bright-light optical microscope.

Are we in a simulation?

Decorative photograph of trains at terminusThe concept of digital twins is gaining acceptance and our ability to generate them is advancing [see ‘Digital twins that thrive in the real-world’ on June 9th, 2021].  It is conceivable that we will be able to simulate many real-world systems in the not-too-distant future.  Perhaps not in my life-time but possibly in this century we will be able to connect these simulations together to create a computer-generated world.  This raises the possibility that other forms of life might have already reached this stage of technology development and that we are living in one of their simulations.  We cannot know for certain that we are not in a simulation but equally we cannot know for certain that we are in a simulation.  If some other life form had reached the stage of being able to simulate the universe then there is a possibility that they would do it for entertainment, so we might exist inside the equivalent of a teenager’s smart phone, or for scientific exploration in which case we might be inside one of thousands of simulations being performed simultaneously in a lab computer to gather statistical evidence on the development of universes.  It seems probable that there would be many more simulations performed for scientific research than for entertainment, so if we are in a simulation then it is more likely that the creator of the simulation is a scientist who is uninterested in this particular one in which we exist.  Of course, an alternative scenario is that humans become extinct before reaching the stage of being able to simulate the world or the universe.  If extinction occurs as a result of our inability to manage the technological advances, which would allow us to simulate the world, then it seems less likely that other life forms would have avoided this fate and so the probability that we are in a simulation should be reduced.  You could also question whether other life forms would have the same motivations or desires to create computer simulations of evolutionary history.  There are lots of reasons for doubting that we are in a computer simulation but it does not seem possible to be certain about it.

David J Chalmers explains the probability that we are in a simulation much more elegantly and comprehensively than me in his book Reality+; virtual worlds and the problems of philosophy, published by Penguin in 2022.