Tag Archives: predictions

Diving into three-dimensional fluids

My research group has been working for some years on methods that allow straightforward comparison of large datasets [see ‘Recognizing strain’ on October 28th 2015].  Our original motivation was to compare maps of predicted strain over the surface of engineering structures with maps of measurements.  We have used these comparison methods to validate predictions produced by computational models [see ‘Million to one’ on November 21st 2018] and to identify and track changes in the condition of engineering structures [see ‘Out of the valley of death into a hype cycle’ on February 24th 2021].  Recently, we have extended this second application to tracking changes in the environment including the occurance of El Niño events [see ‘From strain measurements to assessing El Niño events’ on March 17th, 2021].  Now, we are hoping to extend this research into fluid mechanics by using our techniques to compare flow patterns.  We have had some success in exploring the use of methods to optimise the design of the mesh of elements used in computational fluid dynamics to model some simple flow regimes.  We are looking for a PhD student to work on extending our model validation techniques into fluid mechanics using volumes of data from measurement and predictions rather than fields, i.e., moving from two-dimensional to three-dimensional datasets.  If you are interested or know someone who might be interested then please get in touch.

There is more information on the PhD project here.

Time travel and rewriting history

decorative paintingI have written in the past about consciousness being an accumulation of sensory experiences [see ‘Is there are real ‘you’ or ‘I’? on March 6th, 2019].  Our memory consists of fragments of images, sounds, smells and feelings from the past that we can re-assemble into a complete experience often triggered by something in the present that resembles a fragment of a past experience.  We can time travel in our minds by thinking about the past.  It is so ubiquitous that we barely stop to think about it. Yet, we are fascinated by the possibility of time travel into the future.  However, our subconscious minds are constantly time traveling into the future [see ‘Predicting the future through holistic awareness’ on January 6th, 2021].  They are constantly making predictions about what will happen next, whether anticipating the path taken by a ball so that your hand can be positioned to catch it or picking up an umbrella as you leave the house so that you do not get soaked when it rains later in the day.  The further we attempt travel into the future the less dependable our predictions become and I suspect the same is true for travel backwards in time.  The reliability of our recollection of past experiences become less as time and entropy erode the connections between the fragments in our mind so that we struggle to reassemble all of the fragments in the correct order and our personal history is unintentional rewritten.

Source:

Stefan Klein, We are all stardust, Melbourne: Scribe, 2015  (a conversation with Hannah Monyer on memory entitled ‘Do You Remember?’).

Certainty is unattainable and near-certainty unaffordable

The economists John Kay and Mervyn King assert in their book ‘Radical Uncertainty – decision-making beyond numbers‘ that ‘economic forecasting is necessarily harder than weather forecasting’ because the world of economics is non-stationary whereas the weather is governed by unchanging laws of nature. Kay and King observe that both central banks and meteorological offices have ‘to convey inescapable uncertainty to people who crave unavailable certainty’. In other words, the necessary assumptions and idealisations combined with the inaccuracies of the input data of both economic and meteorological models produce inevitable uncertainty in the predictions. However, people seeking to make decisions based on the predictions want certainty because it is very difficult to make choices when faced with uncertainty – it raises our psychological entropy [see ‘Psychological entropy increased by ineffective leaders‘ on February 10th, 2021].  Engineers face similar difficulties providing systems with inescapable uncertainties to people desiring unavailable certainty in terms of the reliability.  The second law of thermodynamics ensures that perfection is unattainable [see ‘Impossible perfection‘ on June 5th, 2013] and there will always be flaws of some description present in a system [see ‘Scattering electrons reveal dislocations in material structure‘ on November 11th, 2020].  Of course, we can expend more resources to eliminate flaws and increase the reliability of a system but the second law will always limit our success. Consequently, to finish where I started with a quote from Kay and King, ‘certainty is unattainable and the price of near-certainty unaffordable’ in both economics and engineering.

Slowly crossing the valley of death

A view of a valleyThe valley of death in technology development is well-known amongst research engineers and their sponsors. It is the gap between discovery and application, or between realization of an idea in a laboratory and its implementation in the real-world. Some of my research has made it across the valley of death, for example the poleidoscope about 15 years ago (see ‘Poleidoscope (=polariscope+kaleidoscope)‘ on October 14th, 2020).  Our work on quantitative comparisons of data fields from physical measurements and computer predictions is about three-quarters of the way across the valley.  We published a paper in December (see Dvurecenska et al, 2020) on its application to a large panel from the fuselage of an aircraft based on work we completed as part of the MOTIVATE project.  I reported the application of the research in almost real-time in a post in December 2018 (see ‘Industrial Uncertainty‘ on December 12th, 2018) and in further detail in May 2020 as we submitted the manuscript for publication (‘Alleviating industrial uncertainty‘ on May 13th, 2020).  However, the realization in the laboratory occurred nearly a decade ago when teams from Michigan State University and the University of Liverpool came together in the ADVISE project funded by EU Framework 7 programme (see Wang et al, 2011). Subsequently, the team at Michigan State University moved to the University of Liverpool and in collaboration with researchers at Empa developed the technique that was applied in the MOTIVATE project (see Sebastian et al 2013). The work published in December represents a step into the valley of death; from a university environment into a full-scale test laboratory at Empa using a real piece of aircraft.  The MOTIVATE project involved a further step to a demonstration on an on-going test of a cockpit at Airbus which was also reported in a post last May (see ‘The blind leading the blind‘ on May 27th, 2020).  We are now working with Airbus in a new programme to embed the process of quantitative comparison of fields of measurements and predictions into their routine test procedures for aerospace structures.  So, I would like to think we are climbing out of the valley.

Image: not Death Valley but taken on a road trip in 2008 somewhere between Moab, UT and Kanab, UT while living in Okemos, MI.

Sources:

Dvurecenska, K., Diamantakos, I., Hack, E., Lampeas, G., Patterson, E.A. and Siebert, T., 2020. The validation of a full-field deformation analysis of an aircraft panel: A case study. The Journal of Strain Analysis for Engineering Design, p.0309324720971140.

Sebastian, C., Hack, E. and Patterson, E., 2013. An approach to the validation of computational solid mechanics models for strain analysis. The Journal of Strain Analysis for Engineering Design, 48(1), pp.36-47.

Wang, W., Mottershead, J.E., Sebastian, C.M. and Patterson, E.A., 2011. Shape features and finite element model updating from full-field strain data. International Journal of Solids and Structures, 48(11-12), pp.1644-1657.

For more posts on the MOTIVATE project: https://realizeengineering.blog/category/myresearch/motivate-project/

The MOTIVATE project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 754660 and the Swiss State Secretariat for Education, Research and Innovation under contract number 17.00064.

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.