I spent a lot of time on trains last week. I left Liverpool on Tuesday evening for Bristol and spent Wednesday at Airbus in Filton discussing the implementation of the technologies being developed in the EU Clean Sky 2 projects MOTIVATE and DIMES. On Wednesday evening I travelled to Bracknell and on Thursday gave a seminar at Syngenta on model credibility in predictive toxicology before heading home to Liverpool. But, on Friday I was on the train again, to Manchester this time, to listen to a group of my PhD students presenting their projects to their peers in our new Centre for Doctoral Training called Growing skills for Reliable Economic Energy from Nuclear, or GREEN. The common thread, besides the train journeys, is the Fidelity And Credibility of Testing and Simulation (FACTS). My research group is working on how we demonstrate the fidelity of predictions from models, how we establish trust in both predictions from computational models and measurements from experiments that are often also ‘models’ of the real world. The issues are similar whether we are considering the structural performance of aircraft [as on Wednesday], the impact of agro-chemicals [as on Thursday], or the performance of fusion energy and the impact of a geological disposal site [as on Friday] (see ‘Hierarchical modelling in engineering and biology‘ on March 14th, 2018) . The scientific and technical communities associated with each application talk a different language, in the sense that they use different technical jargon and acronyms; and they are surprised and interested to discover that similar problems are being tackled by communities that they rarely think about or encounter.
Category Archives: mechanics
Size matters
Most of us have a sub-conscious understanding of the forces that control the interaction of objects in the size scale in which we exist, i.e. from millimetres through to metres. In this size scale gravitational and inertial forces dominate the interactions of bodies. However, at the size scale that we cannot see, even when we use an optical microscope, the forces that the dominate the behaviour of objects interacting with one another are different. There was a hint of this change in behaviour observed in our studies of the diffusion of nanoparticles [see ‘Slow moving nanoparticles‘ on December 13th, 2017], when we found that the movement of nanoparticles less than 100 nanometres in diameter was independent of their size. Last month we published another article in one of the Nature journals, Scientific Reports, on ‘The influence of inter-particle forces on diffusion at the nanoscale‘, in which we have demonstrated by experiment that Van der Waals forces and electrostatic forces are the dominant forces at the nanoscale. These forces control the diffusion of nanoparticles as well as surface adhesion, friction and colloid stability. This finding is significant because the ionic strength of the medium in which the particles are moving will influence the strength of these forces and hence the behaviour of the nanopartices. Since biological fluids contain ions, this will be important in understanding and predicting the behaviour of nanoparticles in biological applications where they might be used for drug delivery, or have a toxicological impact, depending on their composition.
Van der Waals forces are weak attractive forces between uncharged molecules that are distance dependent. They are named after a Dutch physicist, Johannes Diderik van der Waals (1837-1923). Electrostatic forces occur between charged particles or molecules and are usually repulsive with the result that van der Waals and electrostatic forces can balance each other, or not depending on the circumstances.
Sources:
Giorgi F, Coglitore D, Curran JM, Gilliland D, Macko P, Whelan M, Worth A & Patterson EA, The influence of inter-particle forces on diffusion at the nanoscale, Scientific Reports, 9:12689, 2019.
Coglitore D, Edwardson SP, Macko P, Patterson EA, Whelan MP, Transition from fractional to classical Stokes-Einstein behaviour in simple fluids, Royal Society Open Science, 4:170507, 2017. doi: .
Patterson EA & Whelan MP, Tracking nanoparticles in an optical microscope using caustics. Nanotechnology, 19 (10): 105502, 2009.
Image: from Giorgi et al 2019, figure 1 showing a photograph of a caustic (top) generated by a 50 nm gold nanoparticle in water taken with the optical microscope adjusted for Kohler illumination and closing the condenser field aperture to its minimum following method of Patterson and Whelan with its 2d random walk over a period of 3 seconds superimposed and a plot of the same walk (bottom).
On the trustworthiness of multi-physics models
I stayed in Sheffield city centre a few weeks ago and walked past the standard measures in the photograph on my way to speak at a workshop. In the past, when the cutlery and tool-making industry in Sheffield was focussed around small workshops, or little mesters, as they were known, these standards would have been used to check the tools being manufactured. A few hundred years later, the range of standards in existence has extended far beyond the weights and measures where it started, and now includes standards for processes and artefacts as well as for measurements. The process of validating computational models of engineering infrastructure is moving slowly towards establishing an internationally recognised standard [see two of my earliest posts: ‘Model validation‘ on September 18th, 2012 and ‘Setting standards‘ on January 29th, 2014]. We have guidelines that recommend approaches for different parts of the validation process [see ‘Setting standards‘ on January 29th, 2014]; however, many types of computational model present significant challenges when establishing their reliability [see ‘Spatial-temporal models of protein structures‘ on March 27th, 2019]. Under the auspices of the MOTIVATE project, we are gathering experts in Zurich on November 5th, 2019 to discuss the challenges of validating multi-physics models, establishing credibility and the future use of data from experiments. It is the fourth in a series of workshops held previously in Shanghai, London and Munich. For more information and to register follow this link. Come and join our discussions in one of my favourite cities where we will be following ‘In Einstein’s footprints‘ [posted on February 27th, 2019].
The MOTIVATE project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 754660.
The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.
Amazing innovation in metamaterials
Most manufactured things break when you subject them to 90% strain; however Professor Xiaoyu Rayne Zheng of the Department of Mechanical Engineering at Virginia Tech has developed additively-manufactured metamaterials that completely recover from being deformed to this level. Strains are usually defined as the change in length divided by the original length and is limited in most engineering structures to less than 2%, which is the level at which steel experiences permanent deformation. Professor Zheng has developed a microstructure with a recurring architecture over seven orders of magnitude that allows an extraordinary level of elastic recovery; and then his team manufactures the material using microstereolithography. Stereolithography is a form of three-dimensional printing. Professor Zheng presented some of his research at the USAF research review that I attended last month [see ‘When an upgrade is downgrading‘ on August 21st, 2019 and ‘Coverts inspire adaptive wing design’ on September 11th, 2019]. He explained that, when these metamaterials are made out of a piezoelectric nanocomposite, they can be deployed as tactile sensors with directional sensitivity, or smart energy-absorbing materials.
Rayne Zheng and Aimy Wissa [‘Coverts inspire adaptive wing design’ on September 11th, 2019] both made Compelling Presentations [see post on March 21st, 2018] that captured my attention and imagination; and kept my phone in my pocket!
The picture is from https://www.raynexzheng.com/
For details of the additively-manufactured metamaterials see: Zheng, Xiaoyu, William Smith, Julie Jackson, Bryan Moran, Huachen Cui, Da Chen, Jianchao Ye et al. “Multiscale metallic metamaterials.” Nature materials 15, no. 10 (2016): 1100
For details of the piezoelectric metamaterials see: Cui, Huachen, Ryan Hensleigh, Desheng Yao, Deepam Maurya, Prashant Kumar, Min Gyu Kang, Shashank Priya, and Xiaoyu Rayne Zheng. “Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response.” Nature materials 18, no. 3 (2019): 234