Tag Archives: electrostatic forces

Salt increases nanoparticle diffusion

About two and half years ago, I wrote about an article we had published on the motion of nanoparticles [see ‘Slow moving nanoparticles‘ on December 13th, 2017] in which we had shown that, for very small particles at low concentrations, the motion of a particle is independent of its size and does not flow the well-known Stokes-Einstein law.  Our article presented convincing evidence from experiments to support our conclusions but was light on explanation in terms of the mechanics.  At the end of last year, we published a short article in Scientific Reports, in which we demonstrated that the motion of nanoparticles at low concentrations is dependent on the interaction of van der Waals forces and electrostatic forces.  Van der Waals forces are short-range attractive forces between uncharged molecules due to interacting dipole moments, whereas the electrostatic forces are the repulsion of electric charges.  We changed both of these forces by using salt solutions of different concentration and observing the changes in nanoparticle behaviour.  Increasing the molarity increases the diffusion of the particles until the solution is saturated, as shown in the picture for 50 nanometre diameter gold particles (that’s about half the diameter of a coronavirus particle or one thousandth of the diameter of a human hair).  Our findings have implications for understanding the behaviour of nanoparticles dispersed in biological media, which typically contain salt in solution, because the concentration of salt ions in the medium affects nanoparticle diffusion that has been shown to influence cellular uptake and toxicity.

Sources:

Coglitore D, Edwardson SP, Macko P, Patterson EA, Whelan MP, Transition from fractional to classical Stokes-Einstein behaviour in simple fluids, Royal Society Open Science, 4:170507, 2017.

Giorgi F, Coglitore D, Curran JM, Gilliland D, Macko P, Whelan M, Worth A & Patterson EA, The influence of inter-particle forces on diffusion at the nanoscale, Scientific Reports, 9:12689, 2019.

Size matters

Most of us have a sub-conscious understanding of the forces that control the interaction of objects in the size scale in which we exist, i.e. from millimetres through to metres.  In this size scale gravitational and inertial forces dominate the interactions of bodies.  However, at the size scale that we cannot see, even when we use an optical microscope, the forces that the dominate the behaviour of objects interacting with one another are different.  There was a hint of this change in behaviour observed in our studies of the diffusion of nanoparticles [see ‘Slow moving nanoparticles‘ on December 13th, 2017], when we found that the movement of nanoparticles less than 100 nanometres in diameter was independent of their size.  Last month we published another article in one of the Nature journals, Scientific Reports, on ‘The influence of inter-particle forces on diffusion at the nanoscale‘, in which we have demonstrated by experiment that Van der Waals forces and electrostatic forces are the dominant forces at the nanoscale.  These forces control the diffusion of nanoparticles as well as surface adhesion, friction and colloid stability.  This finding is significant because the ionic strength of the medium in which the particles are moving will influence the strength of these forces and hence the behaviour of the nanopartices.  Since biological fluids contain ions, this will be important in understanding and predicting the behaviour of nanoparticles in biological applications where they might be used for drug delivery, or have a toxicological impact, depending on their composition.

Van der Waals forces are weak attractive forces between uncharged molecules that are distance dependent.  They are named after a Dutch physicist, Johannes Diderik van der Waals (1837-1923).  Electrostatic forces occur between charged particles or molecules and are usually repulsive with the result that van der Waals and electrostatic forces can balance each other, or not depending on the circumstances.

Sources:

Giorgi F, Coglitore D, Curran JM, Gilliland D, Macko P, Whelan M, Worth A & Patterson EA, The influence of inter-particle forces on diffusion at the nanoscale, Scientific Reports, 9:12689, 2019.

Coglitore D, Edwardson SP, Macko P, Patterson EA, Whelan MP, Transition from fractional to classical Stokes-Einstein behaviour in simple fluids, Royal Society Open Science, 4:170507, 2017. doi: .

Patterson EA & Whelan MP, Tracking nanoparticles in an optical microscope using caustics. Nanotechnology, 19 (10): 105502, 2009.

Image: from Giorgi et al 2019, figure 1 showing a photograph of a caustic (top) generated by a 50 nm gold nanoparticle in water taken with the optical microscope adjusted for Kohler illumination and closing the condenser field aperture to its minimum following method of Patterson and Whelan with its 2d random walk over a period of 3 seconds superimposed and a plot of the same walk (bottom).