Tag Archives: MOTIVATE

Massive engineering

Last month I was at the Photomechanics 2018 conference in Toulouse in France.  Photomechanics is the science of using photons to measure deformation and displacements in anything, from biological cells to whole engineering structures, such as bridges or powerstations [see for example: ‘Counting photons to measure stress‘ posted on November 18th, 2015].  I am interested in the challenges created by the extremes of scale and environmental conditions; although on this occasion we presented our research on addressing the challenges of industrial applications, in the EU projects INSTRUCTIVE [see ‘Instructive update‘ on October 4th, 2017] and MOTIVATE [see ‘Brave New World‘ posted on January 10th, 2018].

It was a small conference without parallel sessions and the organisers were more imaginative than usual in providing us with opportunities for interaction.  At the end of first day of talks, we went on a guided walking tour of old Toulouse.  At the end of second day, we went to the Toulouse Aerospace Museum and had the chance to go onboard Concorde.

I stayed an extra day for an organised tour of the Airbus A380 assembly line.  Only the engine pylons are made in Toulouse.  The rest of the 575-seater plane is manufactured around Europe and arrives in monthly road convoys after travelling by sea to local ports.  The cockpit, centre, tail sections of the double-deck fuselage travel separately on specially-made trucks with each 45m long wing section following on its own transporter.  It takes about a month to assemble these massive sections.  This is engineering on a huge scale performed with laser precision (laser systems are used to align the sections).  The engines are also manufactured elsewhere and transported to Toulouse to be hung on the wings.  The maximum diameter of the Rolls-Royce Trent 900 engines, being attached to the plane we saw, is approximately same as the fuselage diameter of an A320 airplane.

Once the A380 is assembled and its systems tested, then it is flown to another Airbus factory in Germany to be painted and for the cabin to be fitted out to the customer’s specification.  In total, 11 Airbus factories in France, Germany, Spain and the United Kingdom are involved in producing the A380; this does not include the extensive supply chain supporting these factories.  As I toured the assembly line and our guide assailed us with facts and figures about the scale of the operation, I was thinking about why the nuclear power industry across Europe could not collaborate on this scale to produce affordable, identical power stations.  Airbus originated from a political decision in the 1970s to create a globally-competitive European aerospace industry that led to a collaboration between national manufacturers which evolved into the Airbus company.  One vision for fusion energy is a globally dispersed manufacturing venture that would evolve from the consortium that is currently building the ITER experiment and planning the DEMO plant.  However, there does not appear to be any hint that the nuclear fission industry is likely to follow the example of the European aerospace industry to create a globally-competitive industry producing massive pieces of engineering within a strictly regulated environment.

There was no photography allowed at Airbus so today’s photograph is of Basilique Notre-Dame de la Daurade in Toulouse.

Brave New World

OLYMPUS DIGITAL CAMERATerm has started, and our students are preparing for end-of-semester examinations; so, I suspect that they would welcome the opportunity to deploy the sleeping-learning that Aldous Huxley envisaged in his ‘Brave New World’ of 2540.  In the brave new world of digital engineering, some engineers are attempting to conceive of a world in which experiments have become obsolete because we can rely on computational modelling to simulate engineering systems.  This ambitious goal is a driver for the MOTIVATE project [see my post entitled ‘Getting smarter‘ on June 21st, 2017]; an EU-project that kicked-off about six months ago and was the subject of a brainstorming session in the Red Deer in Sheffield last September [see my post entitled ‘Anything other than lager, stout or porter!‘ on September 6th, 2017.  The project has its own website now at www.engineeringvalidation.org

A world without experiments is almost unimaginable for engineers whose education and training is deeply rooted in empiricism, which is the philosophical approach that requires assumptions, models and theories to be tested against observations from the real-world before they can be accepted.  In the MOTIVATE project, we are thinking about ways in which fewer experiments can provide more and better measured data for the validation of computational models of engineering systems.   In December, under the auspices of the project, experts from academia, industry and national labs from across Europe met near Bristol and debated how to reshape the traditional flow-chart used in the validation of engineering models, which places equal weight on experiments and computational models [see ASME V&V 10-2006 Figure 2].  In a smaller follow-up meeting in Zurich, just before Christmas [see my post ‘A reflection of existentialism‘ on December 20th, 2017], we blended the ideas from the Bristol session into a new flow-chart that could lead to the validation of some engineering systems without conducting experiments in parallel.  This is not perhaps as radical as it sounds because this happens already for some evolutionary designs, especially if they are not safety-critical.  Nevertheless, if we are to achieve the paradigm shift towards the new digital world, then we will have to convince the wider engineering community about our novel approach through demonstrations of its successful application, which sounds like empiricism again!  More on that in future updates.

Image by Erwin Hack: Coffee and pastries awaiting technical experts debating behind the closed door.

Anything other than lager, stout or porter!

While we were sitting in the Red Deer in Sheffield enjoying a couple of pints of Iron & Steel Bitter from the Chantry Brewery in Rotherham, my long-time Swiss collaborator, and sometime correspondent on this blog, asked me: what’s the difference between an ale and a beer?  And, I had to admit that I couldn’t provide a definitive answer to satisfy his curiosity.  So, I am going to have another go, now.  Beer is an alcoholic drink made from a cereal grain and, according to the Oxford English Dictionary, ale is any beer other than lager, stout, or porter!

However, ‘real ale is a beer brewed from traditional ingredients (malted barley, hops water and yeast), matured by secondary fermentation in the container from which it is dispensed, and served without the use of extraneous carbon dioxide‘ according to CAMRA, the Campaign for Real Ale.  So the Iron & Steel Bitter that we enjoyed at the Red Deer was a real ale.

My digital detox during July [see my post entitled ‘In digital detox‘ on July 19th, 2017] included  sampling bottled ales from local West Country breweries and the photograph shows my favorites ranked from left to right.  Many were enjoyed while overseeing the BBQ in the picture below; however, the time in the Red Deer involved some rather more productive brain-storming for the MOTIVATE project [see my post entitled ‘Getting smarter‘ on June 21st, 2017].

Details of beers in photograph: Pirates Gold from Wooden Hand Brewery; Jail Ale from Dartmoor Brewery; Original Beer from Butcombe Breweries; Rebel Red from Rebel Brewing and Summer Lightening Hop Back Brewery

Instructive report and Brexit

Even though this blog is read in more than 100 countries, surely nobody can be unaware of the furore about Brexit – the UK Government’s plan to leave the European Union.  The European Commission has been funding my research for more than twenty years and I am a frequent visitor to their Joint Research Centre in Ispra, Italy.  During the last decade, I have led consortia of industry, national labs and universities that rejoice in names such as SPOTS, VANESSA and, most recently MOTIVATE.  These are acronyms based loosely on the title of the research project.  Currently, there is no sign that these pan-European research programmes will exclude scientists and engineers from the UK, but then the process of leaving the EU has not yet started, so who knows…

At the moment, I am working with a small UK company, Strain Solutions Ltd, on a EU project called INSTRUCTIVE.  I said these were loose acronyms and this one is very loose: Infrared STRUctural monitoring of Cracks using Thermoelastic analysis in production enVironmEnts.  We are working with Airbus in France, Germany, Spain and the UK to transition a technology from the laboratory to the industrial test environment.  Airbus conducts full-scale fatigue tests on airframe structures to ensure that they have the appropriate life-cycle performance and the INSTRUCTIVE project will deliver a new tool for monitoring the development of damage, in the form of cracks, during these tests.  The technology is thermoelastic stress analysis, which is well-established as a laboratory-based technique [1] for structural analysis [2], fracture mechanics [3] and damage mechanics [4], that I described in a post on November 18th, 2015 [see ‘Counting photons to measure stress’].  It’s exciting to be evolving it into an industrial technique but also to be looking at the potential to apply it using cheap infrared cameras instead of the current laboratory instruments that cost tens of thousands of any currency.  It’s a three-year project and we’ve just completed our first year so we should finish before any Brexit consequences!  Anyway, the image gives you a taster and I plan to share more results with you shortly…

BTW – You might get the impression from my recent posts that teaching MOOCs [see ‘Slowing down time to think [about strain energy]’ on March 8th, 2017] and leadership [see ‘Inspirational leadership’ on March 22nd, 2018] were foremost amongst my activities.  I only write about my research occasionally.  This would not be an accurate impression because the majority of my working life is spent supervising and writing about research.  Perhaps, it’s because I spend so much time writing about research in my ‘day job’ that last year I only blogged about it three times on: digital twins [see ‘Can you trust your digital twin?’ on November 23rd, 2016], model credibility [see ‘Credibility is in the Eye of the Beholder’ on April 20th, 2016] and model validation [see Models as fables on March 16th, 2016].  This list gives another false impression – that my research is focussed on digital modelling and simulation.  It is just the trendiest part of my research activity.  So, I thought that I should correct this imbalance with some INSTRUCTIVE posts.

References:

[1] Greene, R.J., Patterson, E.A., Rowlands, R.E., 2008, ‘Thermoelastic stress analysis’, in Handbook of Experimental Mechanics edited by W.N. Sharpe Jr., Springer, New York.

[2] Rowlands, R.E., Patterson, E.A., 2008, ‘Determining principal stresses thermoelastically’, J. Strain Analysis, 43(6):519-527.

[3] Diaz, F.A., Patterson, E.A., Yates, J.R., 2009, ‘Assessment of effective stress intensity factors using thermoelastic stress analysis’, J. Strain Analysis, 44 (7), 621-632.

[4] Fruehmann RK, Dulieu-Barton JM, Quinn S, Thermoelastic stress and damage analysis using transient loading, Experimental Mechanics, 50:1075-1086, 2010.