Category Archives: INSTRUCTIVE project

Aircraft inspection

A few months I took this series of photographs while waiting to board a trans-Atlantic flight home.  First, a small ladder was placed in front of the engine.  Then a technician arrived, climbed onto the ladder and spread a blanket on the cowling before kneeling on it and spinning the fan blades slowly.  He must have spotted something that concerned him because he climbed in, lay on the blanket and made a closer inspection.  Then he climbed down, rolled up the blanket and left.  A few minutes later he returned with a colleague, laid out the blanket and they both had a careful look inside the engine, after which they climbed down, rolled up the blanket put it back in a special bag and left.  Five or ten minutes later, they were back with a third colleague.  The blanket was laid out again, the engine inspected by two of them at once and a three-way discussion ensued.  The result was that our flight was postponed while the airline produced a new plane for us.

Throughout this process it appeared that the most sophisticated inspection equipment used was the human eye and a mobile phone.  I suspect that the earlier inspections were reported by phone to the supervisor who came to look for himself before making the decision.  One of the goals of our current research is to develop easy-to-use instrumentation that could be used to provide more information about the structural integrity of components in this type of situation.  In the INSTRUCTIVE project we are investigating the use of low-cost infra-red cameras to identify incipient damage in aerospace structures.  Our vision is that the sort of inspection described above could be performed using an infra-red camera that would provide detailed data about the condition of the structure.  This data would update a digital twin that, in turn, would provide a prognosis for the structure.  The motivation is to improve safety and reduce operating costs by accurate identification of critical damage.

 

INSTRUCTIVE research relevance

The Southwest airplane accident last week has been initially attributed to a fatigue crack in a fan blade in the engine.  One of the reasons that this an extremely rare event is the enormous research effort that has been expended on the design, testing and maintenance of the engines and the airframe.  It’s an ongoing research effort to address the trilemma of aircraft that are safe, sustainable and low cost to build and operate.  In collaboration with Strain Solutions Limited, we are in the last year of a three-year project called INSTRUCTIVE which is funded by the Clean Sky 2 programme of the European Commission [see ‘Instructive report and Brexit‘ on March 29th, 2017].   The focus of the research is the development of techniques for use in the aerospace industry to detect the initiation of cracks in the airframe before the crack is visible to the naked eye [see ‘Instructive update‘ on October 4th, 2017].  Laboratory-based techniques exist with this capability and the objective is to transfer the technology to the industrial scale and environment – initially in structural tests performed as part of the design and certification process and perhaps later as part of inspections of aircraft in service.  So far, we have moved from the small components reported in the update posted in October, to a chunk of aircraft fuselage in our lab and we are preparing to participate in a test being conducted by Airbus later this year.

We are also planning a knowledge exchange workshop on ‘Real-time damage tracking in engineering structures’ on November 21st, 2018 at the University of Liverpool’s London campus.  The one-day workshop is being organised in collaboration with the British Society for Strain Measurement.  More details to follow – it will be free!

Image Credit: Powering the 737: CFM56-7 series | by Frans Zwart at https://www.flickr.com/photos/15545136@N06/9719995154  [CC BY-NC-ND 2.0]

 

Instructive Update

Six months ago I wrote about our EU research project, called INSTRUCTIVE, and the likely consequences of Brexit for research [see my post: ‘Instructive report and Brexit‘ on March 29th, 2017].  We seem to be no closer to knowing the repercussions of Brexit on research in the UK and EU – a quarter of EU funding allocated to universities goes to UK universities so the potential impacts will hit both the UK and EU.  Some researchers take every opportunity to highlight these risks and the economic benefits of EU research; for instance the previous EU research programme, Framework Programme 7, is estimated to have created 900,000 jobs in Europe and increased GDP by about 1% in perpetuity.  However, most researchers are quietly getting on with their research and hoping that our political leaders will eventually arrive at a solution that safeguards our prosperity and security.  Our INSTRUCTIVE team is no exception to this approach.  We are about half-way through our project and delivered our first public presentation of our work at the International Conference on Advances in Experimental Mechanics last month.  We described how we are able to identify cracks in metallic structures before they are long enough to be visible to the naked eye, or any other inspection technique commonly used for aircraft structures.  We identify the cracks using an infra-red camera by detecting the energy released during the formation and accumulation of dislocations in the atomic structure that coalesce into voids and eventually into cracks [see my post entitled ‘Alan Arnold Griffith‘ on April 26th, 2017 for more on energy release during crack formation].  We can identify cracks at sub-millimetre lengths and then track them as they propagate through a structure.  At the moment, we are quantifying our ability to detect cracks forming underneath the heads of fasteners [see picture] and other features in real aerospace structures; so that we can move our technology out of the laboratory and into an industrial environment.  We have a big chunk of airplane sitting in the laboratory that we will use for future tests – more on that in later blog posts!

INSTRUCTIVE is an EU Horizon 2020 project funded under the Clean Sky 2 programme [project no. 686777] and involves Strain Solutions Ltd and the University of Liverpool working with Airbus.

Statistics on funding from http://russellgroup.ac.uk/news/horizon-2020-latest-statistics/and https://www.russellgroup.ac.uk/media/5068/24horizon-2020-the-contribution-of-russell-group-universities-june-201.pdf

For other posts on similar research topics, see ‘Counting photons to measure stress‘ on November 18th, 2015 and ‘Forensic engineering‘ on July 22nd, 2015.

Instructive report and Brexit

Even though this blog is read in more than 100 countries, surely nobody can be unaware of the furore about Brexit – the UK Government’s plan to leave the European Union.  The European Commission has been funding my research for more than twenty years and I am a frequent visitor to their Joint Research Centre in Ispra, Italy.  During the last decade, I have led consortia of industry, national labs and universities that rejoice in names such as SPOTS, VANESSA and, most recently MOTIVATE.  These are acronyms based loosely on the title of the research project.  Currently, there is no sign that these pan-European research programmes will exclude scientists and engineers from the UK, but then the process of leaving the EU has not yet started, so who knows…

At the moment, I am working with a small UK company, Strain Solutions Ltd, on a EU project called INSTRUCTIVE.  I said these were loose acronyms and this one is very loose: Infrared STRUctural monitoring of Cracks using Thermoelastic analysis in production enVironmEnts.  We are working with Airbus in France, Germany, Spain and the UK to transition a technology from the laboratory to the industrial test environment.  Airbus conducts full-scale fatigue tests on airframe structures to ensure that they have the appropriate life-cycle performance and the INSTRUCTIVE project will deliver a new tool for monitoring the development of damage, in the form of cracks, during these tests.  The technology is thermoelastic stress analysis, which is well-established as a laboratory-based technique [1] for structural analysis [2], fracture mechanics [3] and damage mechanics [4], that I described in a post on November 18th, 2015 [see ‘Counting photons to measure stress’].  It’s exciting to be evolving it into an industrial technique but also to be looking at the potential to apply it using cheap infrared cameras instead of the current laboratory instruments that cost tens of thousands of any currency.  It’s a three-year project and we’ve just completed our first year so we should finish before any Brexit consequences!  Anyway, the image gives you a taster and I plan to share more results with you shortly…

BTW – You might get the impression from my recent posts that teaching MOOCs [see ‘Slowing down time to think [about strain energy]’ on March 8th, 2017] and leadership [see ‘Inspirational leadership’ on March 22nd, 2018] were foremost amongst my activities.  I only write about my research occasionally.  This would not be an accurate impression because the majority of my working life is spent supervising and writing about research.  Perhaps, it’s because I spend so much time writing about research in my ‘day job’ that last year I only blogged about it three times on: digital twins [see ‘Can you trust your digital twin?’ on November 23rd, 2016], model credibility [see ‘Credibility is in the Eye of the Beholder’ on April 20th, 2016] and model validation [see Models as fables on March 16th, 2016].  This list gives another false impression – that my research is focussed on digital modelling and simulation.  It is just the trendiest part of my research activity.  So, I thought that I should correct this imbalance with some INSTRUCTIVE posts.

References:

[1] Greene, R.J., Patterson, E.A., Rowlands, R.E., 2008, ‘Thermoelastic stress analysis’, in Handbook of Experimental Mechanics edited by W.N. Sharpe Jr., Springer, New York.

[2] Rowlands, R.E., Patterson, E.A., 2008, ‘Determining principal stresses thermoelastically’, J. Strain Analysis, 43(6):519-527.

[3] Diaz, F.A., Patterson, E.A., Yates, J.R., 2009, ‘Assessment of effective stress intensity factors using thermoelastic stress analysis’, J. Strain Analysis, 44 (7), 621-632.

[4] Fruehmann RK, Dulieu-Barton JM, Quinn S, Thermoelastic stress and damage analysis using transient loading, Experimental Mechanics, 50:1075-1086, 2010.