Tag Archives: creativity

Nauseous blogging?

In his novel ‘Nausea’, Jean-Paul Sartre suggests that at around forty, experienced professionals ‘christen their small obstinacies and a few proverbs with the name of experience, they begin to simulate slot machines: put in a coin in the left hand slot and you get tales wrapped in silver paper, put a coin in the slot on the right and you get precious bits of advice that stick to your teeth like caramels’.  When I first read this passage a few weeks ago, it seemed like an apt description of a not-so-young professor writing a weekly blog.

I am on vacation combining the positive effects of reading [see ‘Reading offline‘  on March 19th, 2014] and walking [see ‘Gone walking‘ on April 19th, 2017] with a digital detox [see ‘In digital detox‘ on July 19th, 2017]; but, through the scheduling facilities provided by WordPress, I am still able to dispense my slot machine homily. I will leave you to decide which posts are from the left and right slots.


Jean-Paul Sartre, Nausea, translated by Lloyd Alexander, New York: New Directions Pub. Co., 2013.

La Nausée was first published in 1938 by Librairie Gallimard, Paris.

Fourth industrial revolution

Have you noticed that we are in the throes of a fourth industrial revolution?

The first industrial revolution occurred towards the end of the 18th century with the introduction of steam power and mechanisation.  The second industrial revolution took place at the end of the 19th and beginning of the 20th century and was driven by the invention of electrical devices and mass production.  The third industrial revolution was brought about by computers and automation at the end of the 20th century.  The fourth industrial revolution is happening as result of combining physical and cyber systems.  It is also called Industry 4.0 and is seen as the integration of additive manufacturing, augmented reality, Big Data, cloud computing, cyber security, Internet of Things (IoT), simulation and systems engineering.  Most organisations are struggling with the integration process and, as a consequence, are only exploiting a fraction of the capabilities of the new technology.  Revolutions are, by their nature, disruptive and those organisations that embrace and exploit the innovations will benefit while the existence of the remainder is under threat [see [‘The disrupting benefit of innovation’ on May 23rd, 2018].

Our work on the Integrated Nuclear Digital Environment, on Digital Twins, in the MOTIVATE project and on hierarchical modelling in engineering and biology is all part of the revolution.

Links to these research posts:

Enabling or disruptive technology for nuclear engineering?’ on January 28th, 2015

Can you trust your digital twin?’ on November 23rd, 2016

Getting Smarter’ on June 21st, 2017

‘Hierarchical modelling in engineering and biology’ [March 14th, 2018]


Image: Christoph Roser at AllAboutLean.com from https://commons.wikimedia.org/wiki/File:Industry_4.0.png [CC BY-SA 4.0].

Spontaneously MOTIVATEd

Some posts arise spontaneously, stimulated by something that I have read or done, while others are part of commitment to communicate on a topic related to my research or teaching, such as the CALE series.  The motivation for a post seems unrelated to its popularity.  This post is part of that commitment to communicate.

After 12 months, our EU-supported research project, MOTIVATE [see ‘Getting Smarter‘ on June 21st, 2017] is one-third complete in terms of time; and, as in all research it appears to have made a slow start with much effort expended on conceptualizing, planning, reviewing prior research and discussions.  However, we are on-schedule and have delivered on one of our four research tasks with the result that we have a new validation metric and a new flowchart for the validation process.  The validation metric was revealed at the Photomechanics 2018 conference in Toulouse earlier this year [see ‘Massive Engineering‘ on April 4th, 2018].  The new flowchart [see the graphic] is the result of a brainstorming [see ‘Brave New World‘ on January 10th, 2018] and much subsequent discussion; and will be presented at a conference in Brussels next month [ICEM 2018] at which we will invite feedback [proceedings paper].  The big change from the classical flowchart [see for example ASME V&V guide] is the inclusion of historical data with the possibility of not requiring experiments to provide data for validation purposes. This is probably a paradigm shift for the engineering community, or at least the V&V [Validation & Verification] community.  So, we are expecting some robust feedback – feel free to comment on this blog!


Hack E, Burguete RL, Dvurecenska K, Lampeas G, Patterson EA, Siebert T & Szigeti E, Steps toward industrial validation experiments, In Proceedings Int. Conf. Experimental Mechanics, Brussels, July 2018 [pdf here].

Dvurcenska K, Patelli E & Patterson EA, What’s the probability that a simulation agrees with your experiment? In Proceedings Photomechanics 2018, Toulouse, March 2018.



Mapping atoms

Typical atom maps of P, Cu, Mn, Ni & Si (clockwise from bottom centre) in 65x65x142 nm sample of steel from Styman et al, 2015.

A couple of weeks ago I wrote about the opening plenary talk at the NNL Sci-Tec conference [‘The disrupting benefit of innovation’ on May 23rd, 2018].  One of the innovations discussed at the conference was the applications of atom probe tomography for understanding the mechanisms underpinning material behaviour.  Atom probe tomography produces three-dimensional maps of the location and type of individual atoms in a sample of material.  It is a destructive technique that uses a high energy pulse to induce field evaporation of ions from the tip of a needle-like sample.  A detector senses the position of the ions and their chemical identity is found using a mass spectrometer.  Only small samples can be examined, typically of the order of 100nm.

A group led by Jonathan Hyde at NNL have been exploring the use of atom probe tomography to understand the post-irradiation annealing of weld material in reactor pressure vessels and to examine the formation of bubbles of rare gases in fuel cladding which trap hydrogen causing material embrittlement.  A set of typical three-dimensional maps of atoms is shown in the thumb-nail from a recent paper by the group (follow the link for the original image).

It is amazing that we can map the location of atoms within a material and we are just beginning to appreciate the potential applications of this capability.  As another presenter at the conference said: ‘Big journeys begin with Iittle steps’.

BTW it was rewarding to see one of our alumni from our CPD course [see ‘Leadership is like shepherding’ on May 10th, 2017] presenting this work at the conference.


Styman PD, Hyde JM, Parfitt D, Wilford K, Burke MG, English CA & Efsing P, Post-irradiation annealing of Ni-Mn-Si-enriched clusters in a neutron-irradiated RPV steel weld using atom probe tomography, J. Nuclear Materials, 459:127-134, 2015.