Category Archives: DIMES project

An upside to lockdown

While pandemic lockdowns and travel bans are having a severe impact on spontaneity and creativity in research [see ‘Lacking creativity‘ on October 28th, 2020], they have induced a high level of ingenuity to achieve the final objective of the DIMES project, which is to conduct prototype demonstrations and evaluation tests of the DIMES integrated measurement system.  We have gone beyond the project brief by developing a remote installation system that allows local engineers at a test site to successfully set-up and run our measurement system. This has saved thousands of airmiles and several tonnes of CO2 emissions as well as hours waiting in airport terminals and sitting in planes.  These savings were made by members of our project team working remotely from their bases in Chesterfield, Liverpool, Ulm and Zurich instead of flying to the test site in Toulouse to perform the installation in a section of a fuselage, and then visiting a second time to conduct the evaluation tests.  For this first remote installation, we were fortunate to have our collaborator from Airbus available to support us [see ‘Most valued player on performs remote installation‘ on December 2nd, 2020].  We are about to stretch our capabilities further by conducting a remote installation and evaluation test during a full-scale aircraft test at the Aerospace Research Centre of the National Research Council Canada in Ottawa, Canada with a team who have never seen the DIMES system and knew nothing about it until about a month ago.  I could claim that this remote installation and test will save another couple of tonnes of CO2; but, in practice, we would probably not be performing a demonstration in Canada if we had not developed the remote installation capability. 

The University of Liverpool is the coordinator of the DIMES project and the other partners are Empa, Dantec Dynamics GmbH and Strain Solutions LtdAirbus is our topic manager.

Logos of Clean Sky 2 and EUThe DIMES project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 820951.  The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

 

Out of the valley of death into a hype cycle?

Fig 5 from Middleton et al with full captionThe capability to identify damage and track its propagation in structures is important in ensuring the safe operation of a wide variety of engineering infrastructure, including aircraft structures. A few years ago, I wrote about research my group was performing, in the INSTRUCTIVE project [see ‘INSTRUCTIVE final reckoning‘ on January 9th, 2019] with Airbus and Strain Solutions Limited, to deliver a new tool for monitoring the development of damage using thermoelastic stress analysis (TSA) [see ‘Counting photons to measure stress‘ on November 18th, 2015].  We collected images using a TSA system while a structural component was subject to cycles of load that caused damage to initiate and propagate during a fatigue test. The series of images were analysed using a technique based on optical flow to identify apparent movement between the images which was taken as indication of the development of damage [1]. We demonstrated that our technique could indicate the presence of a crack less than a millimetre in length and even identify cracks initiating under the heads of bolts using experiments performed in our laboratory [see ‘INSTRUCTIVE update‘ on October 4th, 2017].  However, this technique was susceptible to errors in the images when we tried to use low-cost sensors and to changes in the images caused by flight cycle loading with varying amplitude and frequency of loads.  Essentially, the optical flow approach could be fooled into identifying damage propagation when a sensor delivered a noisy image or the shape of the load cycle was changed.  We have now overcome this short-coming by replacing the optical flow approach with the orthogonal decomposition technique [see ‘Recognising strain‘ on October 28th, 2015] that we developed for comparing data fields from measurements and predictions in validation processes [see ‘Million to one‘ on November 21st, 2018] .  Each image is decomposed to a feature vector and differences between the feature vectors are indicative of damage development (see schematic in thumbnail from [2]).  The new technique, which we have named the differential feature vector method, is sufficiently robust that we have been able to use a sensor costing 1% of the price of a typical TSA system to identify and track cracks during cyclic loading.  The underpinning research was published in December 2020 by the Royal Society [2] and the technique is being implemented in full-scale ground-tests on aircraft structures as part of the DIMES project.  Once again, a piece of technology is emerging from the valley of death [see ‘Slowly crossing the valley of death‘ on January 27th, 2021] and, without wishing to initiate the hype cycle [see ‘Hype cycle‘ on September 23rd, 2015], I hope it will transform the use of thermal imaging for condition monitoring.

Logos of Clean Sky 2 and EUThe INSTRUCTIVE and DIMES projects have received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreements No. 685777 and No. 820951 respectively.

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

References

[1] Middleton CA, Gaio A, Greene RJ & Patterson EA, Towards automated tracking of initiation and propagation of cracks in Aluminium alloy coupons using thermoelastic stress analysis, J. Non-destructive Testing, 38:18, 2019.

[2] Middleton CA, Weihrauch M, Christian WJR, Greene RJ & Patterson EA, Detection and tracking of cracks based on thermoelastic stress analysis, R. Soc. Open Sci. 7:200823, 2020.

Most valued player performs remote installation

Our Most Valued Player (inset) installing a point sensor in the front section of a fuselage at Airbus in Toulouse under the remote direction of engineers in Switzerland and the UKMany research programmes have been derailed by the pandemic which has closed research laboratories or restricted groups of researchers from working together to solve complex problems. Some research teams have used their problem-solving skills to find new ways of collaborating and to continue to make progress. In the DIMES project we have developed an innovative system for detecting and monitoring the propagation of damage in aircraft structures, and prior to the pandemic, we were planning to demonstrate it on a full-scale test of an aircraft fuselage section at Airbus in Toulouse. However, the closure of our laboratories and travel restrictions across Europe have made it impossible for members of our team based in Liverpool, Chesterfield, Ulm and Zurich to meet or travel to Toulouse to set-up the demonstration. Instead we have used hours of screen-time in meetings to complete our design work and plan the installation of the system in Toulouse. These meetings often involve holding components up to our laptop cameras to show one another what we are doing.  The components of the system were manufactured in various locations before being shipped to Empa in Zurich where they were assembled and the complete system was then shipped to Toulouse.  At the same time, we designed a communication system that included a headset with camera, microphone and earpieces so that our colleague in Toulouse could be guided through the installation of our system by engineers in Germany, Switzerland and the UK.  Amazingly, it all worked and we were half-way through the installation last month when a rise in the COVID infection rate caused a shutdown of the Airbus site in Toulouse.  What we need now is remote-controlled robot to complete the installation for us regardless of COVID restrictions; however, I suspect the project budget cannot afford a robot sufficiently sophisticated to replace our Most Valued Player (MVP) in Toulouse.

The University of Liverpool is the coordinator of the DIMES project and the other partners are Empa, Dantec Dynamics GmbH and Strain Solutions Ltd.

Logos of Clean Sky 2 and EUThe DIMES project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 820951.  The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

Image: Our Most Valued Player (inset) installing a point sensor in the front section of a fuselage at Airbus in Toulouse under the remote direction of engineers in Switzerland and the UK.

My Engineering Day

Photograph of roof tops and chimneys in Liverpool.Today is ‘This is Engineering’ day organised by the Royal Academy of Engineering to showcase what engineers and engineering really look like, celebrate our impact on the world and shift public perception of engineering towards an appreciation that engineers are a varied and diverse group of people who are critical to solving societal challenges.  You can find out more at https://www.raeng.org.uk/events/online-events/this-is-engineering-day-2020.  I have decided to contribute to ‘This is Engineering’ day by describing what I do on a typical working day as an engineer. 

Last Wednesday was like many other working days during the pandemic.  I got up about 7am went downstairs for breakfast in our kitchen and then climbed back upstairs to my home-office in the attic of our house in Liverpool [see ‘Virtual ascent of Moel Famau’ on April 8th, 2020].  I am lucky in that my home-office is quite separate from the living space in our house and it has a great view over the rooftops.  I arrived there at about 7.45am, opened my laptop, deleted the junk email, and dealt with the emails that were urgent, interesting or could be replied to quickly.  At around 8am, I closed my email and settled down to write the first draft of a proposal for funding to support our research on digital twins [see ‘Tacit hurdle to digital twins’ on August 26th, 2020].  I had organised a meeting earlier in the week with a group of collaborators and now I had the task of converting the ideas from our discussion into a coherent programme of research.  Ninety caffeine-fuelled minutes later, I had to stop for a Google Meet call with a collaborator at Airbus in Toulouse during which we agreed the wording on a statement about the impact our recent research efforts.  At 10am I joined a Skype call for a progress review with a PhD student on our dual PhD programme with National Tsing Hua University in Taiwan, so we were joined by his supervisor in Taiwan where it was 6pm [see ‘Citizens of the World’ on November 27th, 2019].  The PhD student presented some very interesting results on evaluating the waviness of fibres in carbon-fibre composite materials using ultrasound measurements which he had performed in our laboratory in Liverpool.  Despite the local lockdown in Liverpool due to the pandemic, research laboratories on our campus are open and operating at reduced occupancy to allow social distancing.

After the PhD progress meeting, I had a catch-up session with my personal assistant to discuss my schedule for the next couple of weeks before joining a MS-Teams meeting with a couple of colleagues to discuss the implications of our current work on computational modelling and possible future directions.  The remaining hour up to my lunch break was occupied by a conference call with a university in India with whom we are exploring a potential partnership.  I participated in my capacity as Dean of the School of Engineering and joined about twenty colleagues from both institutions discussing possible areas of collaboration in both research and teaching.  Then it was back downstairs for a half-hour lunch break in the kitchen. 

Following lunch, I continued in my role as Dean with a half-hour meeting with Early Career Academics in the School of Engineering followed by internal interviews for the directorship of one of our postgraduate research programmes.  At 3.30pm, I was able to switch back to being a researcher and meet with a collaborator to discuss the prospects for extending our work on tracking synthetic nanoparticles into monitoring the motion of biological entities such as viruses and bacteria [see ‘Modelling from the cell through the individual to the host population’ on May 5th 2020].  Finally, as usual, I spent the last two to three hours of my working day replying to emails, following up on the day’s meetings and preparing for the following day.  One email was a request for help from one of my PhD students working in the laboratory who needed a piece of equipment that had been stored in my office for safekeeping.  So, I made the ten-minute walk to campus to get it for her which gave me the opportunity to talk face-to-face with one of the post-doctoral researchers in my group who is working on the DIMES project [see ‘Condition-monitoring using infra imaging‘ on June 17th, 2020].  After dinner, my wife and I walked down to the Albert Dock and along the river front to Princes Dock and back up to our house.

So that was my Engineering Day last Wednesday!

 

Logos of Clean Sky 2 and EUThe DIMES project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 820951.  The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.