Category Archives: DIMES project

Taking an aircraft’s temperature as a health check

The title of this post is the title of a talk that I will deliver during the Pint of Science Festival in Liverpool later this month.  At last year’s festival I spoke about the very small: Revealing the invisible: real-time motion of virus particles [see ‘Fancy a pint of science‘ on April 27th, 2022].  This year I am moving up the size scale and from biomedical engineering to aerospace engineering to talk about condition monitoring in aircraft structures based on our recent research in the INSTRUCTIVE [see ‘INSTRUCTIVE final reckoning‘ on January 9th 2019] and DIMES [see ‘Our last DIMES‘ on September 22, 2021] projects.  I am going describe how we have reduced the size and cost of infrared instrumentation for monitoring damage propagation in aircraft structures while at the same time increasing the resolution so that we can detect 1 mm increments in crack growth in metals and 6 mm diameter indications of damage in composite materials.  If you want to learn more how we did it and fancy a pint of science, then join us in Liverpool later this month for part of the world’s largest festival of public science.  This year we have a programme of engineering talks on Hope Street in Frederiks on May 22nd and in the Philharmonic Dining Rooms on May 23rd where I be the second speaker.

The University of Liverpool was the coordinator of the DIMES project and the other partners were Empa, Dantec Dynamics GmbH and Strain Solutions Ltd.  Strain Solutions Limited was the coordinator of the INSTRUCTIVE project in which the other participant was the University of Liverpool.  Airbus was the project manager for both projects.

The DIMES and INSTRUCTIVE projects  received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 820951 and 6968777 respectively.

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

Seeing small changes is a big achievement

Figure 8 from Amjad et al 2022Some years ago I wrote with great excitement about publishing a paper in Royal Society Open Science [see ‘Press release!‘ on November 15th, 2017].  This has become a routine event; however, the excitement returned earlier this month when we had a paper published in the Proceedings of Royal Society of London on ‘A thermal emissions-based real-time monitoring system for in situ detection of cracks’.  The Proceedings were first published in February 1831 and this is only the second time in my career that my group has published a paper in them.  The last time was ten years ago and was also about cracks: ‘Quantitative measurement of plastic strain field at a fatigue crack tip’.  I have already described this earlier work in a post [see ‘Scattering electrons reveal dislocations in material structure’ on November 11th, 2020].  This was the first time that the size and shape of the plastic zone around a crack had been measured directly rather than inferred from other measurements.  It required an expensive scanning electron microscope and a well-equipped laboratory.  In contrast, the work in the paper published this month uses components that can be purchased for the price of a smart phone and assembled into a device not much larger than a smart phone.  The device detects the changes in the temperature distribution over the surface of the metal caused by the propagation of a crack due to repeated loading of the metal.  It is based on the principles of thermoelastic stress analysis [see ‘Counting photons to measure stress‘ on November 18th, 2015], which is a well-established measurement technique that usually requires expensive infra-red cameras.  Our key innovation is to not aim for absolute measurement values, which allows us to ignore calibration requirements, and instead to look for changes in the temperature distribution on the metal surface by extracting feature vectors from the images [see ‘Recognising strain‘ on October 28th 2015].  Our approach lowers the cost of the equipment required by several orders of magnitude, achieves comparable or better resolution of crack growth (around 1 mm) and will function at lower loading frequencies than techniques based on classical thermoelastic stress analysis.  Besides crack analysis, the common theme of the two papers is the innovative use of image processing to identify change, based on the fracture mechanics of crack propagation.

The research reported in this month’s paper was largely performed as part of the DIMES project about which I have written many posts.

The University of Liverpool was the coordinator of the DIMES project and the other partners were Empa, Dantec Dynamics GmbH and Strain Solutions Ltd.  Airbus was the topic manager on behalf of the Clean Sky 2 Joint Undertaking.

Logos of Clean Sky 2 and EUThe DIMES project received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 820951.

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

References:

Amjad, K., Lambert, C.A., Middleton, C.A., Greene, R.J., Patterson, E.A., 2022, A thermal emissions-based real-time monitoring system for in situ detection of cracks, Proc. R. Soc. A., doi: 10.1098/rspa.2021.0796.

Yang, Y., Crimp, M., Tomlinson, R.A., Patterson, E.A., 2012, Quantitative measurement of plastic strain field at a fatigue crack tip, Proc. R. Soc. A., 468(2144):2399-2415.

Image: Figure 8 from Amjad et al, 2022, Proc. R. Soc. A., doi: 10.1098/rspa.2021.0796.

Too much of a good thing?

I wrote a couple of weeks ago about ‘Our last DIMES’ meetings (on September 22nd, 2021).  They were hybrid meetings with about half the participants attending in person and the remainder on-line.  When the pandemic started we had to master the skill of conducting discussions via our laptops while sitting on our own.  Now, we are learning how to include everyone in a discussion when only half of the participants are in the physical room.  One of our first steps was to re-equip our meeting rooms with higher quality video conferencing facilities so that we can see and hear one another more clearly.  Unfortunately, our new equipment revealed the poor quality of the video clips we have produced during the DIMES project.  Nevertheless, if you have never been present during a wing-bend test or a fatigue test on a large composite panel then you might find these clips interesting (see also the video of ‘Noisy progressive failure of a composite panel’ on June 30th 2021).  We also produced an introductory video for the DIMES project which was to be first in a series of video shorts but the pandemic intervened and we have never been in the same place as our camera crew so we have not made anymore.  Maybe that’s a good thing because 500 hours of video are uploaded every minute to YouTube so you will not have time to watch our DIMES videos 😉.

For more short videos from our earlier projects see ‘Archive video footage from EU projects’ on June 5th, 2019.

The University of Liverpool is the coordinator of the DIMES project and the other partners are Empa, Dantec Dynamics GmbH and Strain Solutions LtdAirbus is the topic manager on behalf of the Clean Sky 2 Joint Undertaking.

Logos of Clean Sky 2 and EUThe DIMES project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 820951.

 

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

Our last DIMES

Photograph of wing test in AWICThirty-three months ago (see ‘Finding DIMES‘ on February 6th, 2019) we set off at a gallop ‘to develop and demonstrate an automated measurement system that integrates a range of measurement approaches to enable damage and cracks to be detected and monitored as they originate at multi-material interfaces in an aircraft assembly’. The quotation is taken directly from the aim of the DIMES project which was originally planned and funded as a two-year research programme. Our research, in particular the demonstration element, has been slowed down by the pandemic and we resorted to two no-cost extensions, initially for three months and then for six months to achieve the project aim.   Two weeks ago, we held our final review meeting, and this week we will present our latest results in the third of a series of annual workshops hosted by Airbus, the project’s topic manager.   The DIMES system combines visual and infrared cameras with resistance strain gauges and fibre Bragg gratings to detect 1 mm cracks in metals and damage indications in composites that are only 6 mm in diameter.  We had a concept design by April 2019 (see ‘Joining the dots‘ on July 10th, 2019) and a detailed design by August 2019.  Airbus supplied us with a section of A320 wing, and we built a test-bench at Empa in Zurich in which we installed our prototype measurement system in the last quarter of 2019 (see ‘When seeing nothing is a success‘ on December 11th, 2019).  Then, the pandemic intervened and we did not finish testing until May 2021 by which time, we had also evaluated it for monitoring damage in composite A350 fuselage panels (see ‘Noisy progressive failure of a composite panel‘ on June 30th, 2021).  In parallel, we have installed our ‘DIMES system’ in ground tests on an aircraft wing at Airbus in Filton (see image) and, using a remote installation, in a cockpit at Airbus in Toulouse (see ‘Most valued player performs remote installation‘ on December 2nd, 2020), as well as an aircraft at NRC Aerospace in Ottawa (see ‘An upside to lockdown‘ on April 14th 2021).   Our innovative technology allows condition-led monitoring based on automated damage detection and enables ground tests on aircraft structures to be run 24/7 saving about 3 months on each year-long test.

The University of Liverpool is the coordinator of the DIMES project and the other partners are Empa, Dantec Dynamics GmbH and Strain Solutions Ltd.

The DIMES project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 820951.

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.