Category Archives: DIMES project

Noisy progressive failure of a composite panel

Photograph showing close-up of progressive failure in a composite materialComposite materials have revolutionized many fields of engineering by providing lightweight strong components whose internal structure can be tailored to optimise their load-bearing capabilities. Engineering composites consist of high-strength fibres embedded in a lightweight matrix that keeps the fibres in position and provides the shape of the component.  While many composite materials have an impressive structural performance, some also exhibit spectacular failure modes with noises like guitar strings snapping when fibres start to fail and with jagged eruptions of material appearing on the surface, as shown in the image.  A year ago, I reported on our work in the DIMES project, to test the capabilities of our integrated measurement system to detect and track damage in real-time in a metallic section from an aircraft wing [see ‘Condition monitoring using infrared imaging‘ on June 17th, 2020].  Last month, we completed a further round of tests at Empa to demonstrate the system’s capabilities on composite structures which have been tested almost to destruction.  One of the advantages of composite structures is their capability to function and bear load despite quite high levels of damage, which meant we were able to record the progressive rupture of one of our test panels during cyclic fatigue loading.  Watch and listen to this short video to see and hear the material being torn apart – ignore the loud creaking and groaning from the test rig, it’s the quieter sound like dead leaves being swept up.

The University of Liverpool is the coordinator of the DIMES project and the other partners are Empa, Dantec Dynamics GmbH and Strain Solutions LtdAirbus is the topic manager on behalf of the Clean Sky 2 Joint Undertaking.

The DIMES project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 820951.

 

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

An upside to lockdown

While pandemic lockdowns and travel bans are having a severe impact on spontaneity and creativity in research [see ‘Lacking creativity‘ on October 28th, 2020], they have induced a high level of ingenuity to achieve the final objective of the DIMES project, which is to conduct prototype demonstrations and evaluation tests of the DIMES integrated measurement system.  We have gone beyond the project brief by developing a remote installation system that allows local engineers at a test site to successfully set-up and run our measurement system. This has saved thousands of airmiles and several tonnes of CO2 emissions as well as hours waiting in airport terminals and sitting in planes.  These savings were made by members of our project team working remotely from their bases in Chesterfield, Liverpool, Ulm and Zurich instead of flying to the test site in Toulouse to perform the installation in a section of a fuselage, and then visiting a second time to conduct the evaluation tests.  For this first remote installation, we were fortunate to have our collaborator from Airbus available to support us [see ‘Most valued player on performs remote installation‘ on December 2nd, 2020].  We are about to stretch our capabilities further by conducting a remote installation and evaluation test during a full-scale aircraft test at the Aerospace Research Centre of the National Research Council Canada in Ottawa, Canada with a team who have never seen the DIMES system and knew nothing about it until about a month ago.  I could claim that this remote installation and test will save another couple of tonnes of CO2; but, in practice, we would probably not be performing a demonstration in Canada if we had not developed the remote installation capability. 

The University of Liverpool is the coordinator of the DIMES project and the other partners are Empa, Dantec Dynamics GmbH and Strain Solutions LtdAirbus is our topic manager.

Logos of Clean Sky 2 and EUThe DIMES project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 820951.  The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

 

Out of the valley of death into a hype cycle?

Fig 5 from Middleton et al with full captionThe capability to identify damage and track its propagation in structures is important in ensuring the safe operation of a wide variety of engineering infrastructure, including aircraft structures. A few years ago, I wrote about research my group was performing, in the INSTRUCTIVE project [see ‘INSTRUCTIVE final reckoning‘ on January 9th, 2019] with Airbus and Strain Solutions Limited, to deliver a new tool for monitoring the development of damage using thermoelastic stress analysis (TSA) [see ‘Counting photons to measure stress‘ on November 18th, 2015].  We collected images using a TSA system while a structural component was subject to cycles of load that caused damage to initiate and propagate during a fatigue test. The series of images were analysed using a technique based on optical flow to identify apparent movement between the images which was taken as indication of the development of damage [1]. We demonstrated that our technique could indicate the presence of a crack less than a millimetre in length and even identify cracks initiating under the heads of bolts using experiments performed in our laboratory [see ‘INSTRUCTIVE update‘ on October 4th, 2017].  However, this technique was susceptible to errors in the images when we tried to use low-cost sensors and to changes in the images caused by flight cycle loading with varying amplitude and frequency of loads.  Essentially, the optical flow approach could be fooled into identifying damage propagation when a sensor delivered a noisy image or the shape of the load cycle was changed.  We have now overcome this short-coming by replacing the optical flow approach with the orthogonal decomposition technique [see ‘Recognising strain‘ on October 28th, 2015] that we developed for comparing data fields from measurements and predictions in validation processes [see ‘Million to one‘ on November 21st, 2018] .  Each image is decomposed to a feature vector and differences between the feature vectors are indicative of damage development (see schematic in thumbnail from [2]).  The new technique, which we have named the differential feature vector method, is sufficiently robust that we have been able to use a sensor costing 1% of the price of a typical TSA system to identify and track cracks during cyclic loading.  The underpinning research was published in December 2020 by the Royal Society [2] and the technique is being implemented in full-scale ground-tests on aircraft structures as part of the DIMES project.  Once again, a piece of technology is emerging from the valley of death [see ‘Slowly crossing the valley of death‘ on January 27th, 2021] and, without wishing to initiate the hype cycle [see ‘Hype cycle‘ on September 23rd, 2015], I hope it will transform the use of thermal imaging for condition monitoring.

Logos of Clean Sky 2 and EUThe INSTRUCTIVE and DIMES projects have received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreements No. 685777 and No. 820951 respectively.

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

References

[1] Middleton CA, Gaio A, Greene RJ & Patterson EA, Towards automated tracking of initiation and propagation of cracks in Aluminium alloy coupons using thermoelastic stress analysis, J. Non-destructive Testing, 38:18, 2019.

[2] Middleton CA, Weihrauch M, Christian WJR, Greene RJ & Patterson EA, Detection and tracking of cracks based on thermoelastic stress analysis, R. Soc. Open Sci. 7:200823, 2020.

Most valued player performs remote installation

Our Most Valued Player (inset) installing a point sensor in the front section of a fuselage at Airbus in Toulouse under the remote direction of engineers in Switzerland and the UKMany research programmes have been derailed by the pandemic which has closed research laboratories or restricted groups of researchers from working together to solve complex problems. Some research teams have used their problem-solving skills to find new ways of collaborating and to continue to make progress. In the DIMES project we have developed an innovative system for detecting and monitoring the propagation of damage in aircraft structures, and prior to the pandemic, we were planning to demonstrate it on a full-scale test of an aircraft fuselage section at Airbus in Toulouse. However, the closure of our laboratories and travel restrictions across Europe have made it impossible for members of our team based in Liverpool, Chesterfield, Ulm and Zurich to meet or travel to Toulouse to set-up the demonstration. Instead we have used hours of screen-time in meetings to complete our design work and plan the installation of the system in Toulouse. These meetings often involve holding components up to our laptop cameras to show one another what we are doing.  The components of the system were manufactured in various locations before being shipped to Empa in Zurich where they were assembled and the complete system was then shipped to Toulouse.  At the same time, we designed a communication system that included a headset with camera, microphone and earpieces so that our colleague in Toulouse could be guided through the installation of our system by engineers in Germany, Switzerland and the UK.  Amazingly, it all worked and we were half-way through the installation last month when a rise in the COVID infection rate caused a shutdown of the Airbus site in Toulouse.  What we need now is remote-controlled robot to complete the installation for us regardless of COVID restrictions; however, I suspect the project budget cannot afford a robot sufficiently sophisticated to replace our Most Valued Player (MVP) in Toulouse.

The University of Liverpool is the coordinator of the DIMES project and the other partners are Empa, Dantec Dynamics GmbH and Strain Solutions Ltd.

Logos of Clean Sky 2 and EUThe DIMES project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 820951.  The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

Image: Our Most Valued Player (inset) installing a point sensor in the front section of a fuselage at Airbus in Toulouse under the remote direction of engineers in Switzerland and the UK.