Tag Archives: leadership

Collegiality as a defence against pandemic burnout

photograph of a flower for decorative purposes onlyMany of my less experienced colleagues ask, ‘what is collegiality?’  Collegiality is the glue that holds universities together according to Neeta Baporikar.  While Roland S. Barth suggested that if students are to learn and develop, then their teachers must also learn and develop and collegiality is the set of practices and culture that support this adult growth.  In this context, Thomas Hoerr has proposed that collegiality has five components: (i) teachers talking about students with teachers; (ii) teachers working together to develop education programmes; (iii) teachers observing one another; (iv) teachers teaching each other; and (v) teachers talking about education and working together on committees.  Neeta Baporikar echoes this view by concluding that if we hope to teach students to participate, examine issues, collaborate, think critically and synthesise new approaches then we should be their model.  

In an environment where research is a priority, it is possible to substitute ‘researcher’ for ‘teacher’ in the descriptions above.  Then collegiality becomes researchers talking about [research] students, researchers working together to develop research programmes, researchers observing one another, researchers teaching each other, and researchers talking about research and working together on committees.  The idea that collegiality is a strategy for excellence holds as well as for research as it does for teaching.

The pressures on early career academics in a research university can be intense and the temptation to focus exclusively on delivering teaching and performing research can lead individuals to work in isolation and to neglect the opportunities provided by active engagement with their colleagues.  However, leaders must also take responsibility for creating an environment in which collegiality can thrive and encouraging active participation – it is part our service to the academic community as leaders to create and maintain a culture of scholarship and excellence [see ‘Clueless on leadership style’ on June 14th, 2017].  Neeta Baporikar provides steps that heads of departments can take to nurture collegiality, including providing a vision, encouraging collaborative participation, listening to diverse opinions, building on people’s strengths, and being aware of the world outside the department.  This is similar to the shepherding approach to leadership that I wrote about in May 2017 [‘Leadership is like shepherding’ on May 10th, 2017].  However, it has all become much more difficult in a pandemic – both collegiality and leadership.  Last week an article in Nature suggested that pandemic burnout is rife amongst academics working long hours in isolation to transpose and deliver their teaching materials online, to maintain their research without the spontaneity of face-to-face discussions with their team or collaborators, and to support the well-being and mental health of students who are also at risk of burnout.  It is suggested that burnout can be managed by finding a forum to express your feelings, creating ways to detach from stress, prioritizing and normalizing conversations about mental health, and fighting the isolation through meeting with peers.  These steps are a combination of traditional collegiality and the five ways to well-being: connect, be active, take notice, keep learning and give [see graphic in ‘On the impact of writing on well-being’ on March 3rd, 2021].

References

Neeta Baporikar, Collegiality as a strategy for excellence in academia, IJ Strategic Change Management, 6(1), 2015.

Roland Barth, Improving schools from within, Jossey-Bass, 2010.

Virginia Gewin, Pandemic burnout is rampant in academia, Nature, 591: 489-491, 2021.

Thomas R. Hoerr, Principal Connection: The Juggler’s Guide to Collegiality, Communication Skills for Leaders, 72(7): 88 -89, 2015.

Psychological entropy increased by ineffectual leaders

Decorative image of a flowerYou might have wondered why I used ‘entropy’, and ‘psychological entropy’ in particular, as examples in my post on drowning in information a couple of weeks ago [‘We are drowning in information while starving for wisdom‘ on January 20th, 2021].  It was not random.  I spent some of the Christmas break catching up on my reading pile of interesting looking scientific papers and one on psychological entropy stimulated my thinking.  Psychological entropy is the concept that our brains are self-organising systems in a continual dialogue with the environment which leads to the emergence of a relatively small number of stable low-entropy states.  These states could be considered to be assemblies of neurons or patterns of thoughts, perhaps a mindset.  When we are presented with a new situation or problem to solve for which the current assembly or mindset is unsuitable then we start to generate new ideas by generating more and different assemblies of neurons in our brains.  Our responses become unpredictable as the level of entropy in our minds increases until we identify a new approach that deals effectively with the new situation and we add it to our list of available low-entropy stable states.  If the external environment is constantly changing then our brains are likely to be constantly churning through high entropy states which leads to anxiety and psychological stress.  Effective leaders can help us cope with changing environments by providing us with a narrative that our brains can use as a blueprint for developing the appropriate low-entropy state.  Raising psychological entropy by the right amount is conducive to creativity in the arts, science and leadership but too much leads to mental breakdown.

Sources:

Hirsh JB, Mar RA, Peterson JB. Psychological entropy: A framework for understanding uncertainty-related anxiety. Psychological review. 2012 Apr;119(2):304

Handscombe RD & Patterson EA, The Entropy Vector: connecting science and business, Singapore: World Scientific Press, 2004.

Lacking creativity

detail tl from abstract painting by Zahrah RI feel that I am moving to the next level of experience with online meetings but I am unsure that it will address the slow down in productivity and a loss of creativity being reported by most leaders of research groups to whom I have spoken recently.  About a month ago, we organised an ‘Away Day’ for all staff in the School of Engineering with plenary presentations, breakout groups and a Q&A session.  Of course, the restrictions induced by the pandemic meant that we were only ‘away’ in the sense of putting aside our usual work routine and it only lasted for half a day because we felt a whole day in an online conference would be counter productive; nevertheless, the feedback was positive from the slightly more than one hundred staff who participated.  On a smaller scale, we have experimented with randomly allocating members of my research team to breakout sessions during research group meetings in an attempt to give everyone a chance to contribute and to stimulate those serendipitous conversations that lead to breakthroughs, or least alternative solutions to explore.  We have also invited external speakers to join our group meetings – last month we had a talk from a researcher in Canada.  We are trying to recreate the environment in which new ideas bubble to the surface during casual conversations at conferences or visits to laboratories; however, I doubt we are succeeding.  The importance of those conversations to creativity and innovation in science is highlighted by the story of how Emmanuelle Charpentier and Jennifer Doudna met for the first time at a conference in Puerto Rico.   While wandering around San Juan on a warm Caribbean evening in 2011 discussing the way bacteria protect themselves against viruses by chopping up the DNA of the virus, they realised that it could be turned into molecular scissors for cutting and editing the genes of any living creature.  They went home after the conference to their labs in Umea University, Sweden and UC Berkeley respectively and collaborated round the clock to implement their idea for which they won this year’s Nobel Prize for Chemistry.  Maybe the story is apocryphal; however, based on my own experience of conversations on the fringes of scientific meetings, they are more productive than the meeting itself and their loss is a significant casualty of the COVID-19 pandemic.  There are people who point to the reduction in the carbon footprint of science research caused by the cancellation of conferences and who argue that, in order to contribute to UN Goals for Sustainable Development, we should not return to gatherings of researchers in locations around the world.  I agree that we should consider our carbon footprint more carefully when once again we can travel to scientific meetings; however, I think the innovations required to achieve the UN Goals will emerge very slowly, or perhaps not all, if researchers are limited to meeting online only.

Source:

Clive Cookson, A dynamic Nobel duo with natural chemistry, FT Weekend, 10/11 October 2020.

Image: Extract from abstract by Zahrah Resh.

Tacit hurdle to digital twins

Tacit knowledge is traditionally defined as knowledge that is not explicit or that is difficult to express or transfer from someone else.  This description of what it is not makes the definition itself tacit knowledge which is not very helpful.  Management guides resolve this by giving examples, such as aesthetic sense, or innovation and leadership skills which are elusive skills that are hard to explain [see ‘Innovation out of chaos‘ on June 29th 2016 and  ‘Clueless on leadership style‘ on June 14th, 2017].  In engineering, there are a series of skills that are hard to explain or teach, including creative problem-solving [see ‘Learning problem-solving skills‘  on October 24th, 2018], artful design [see ‘Skilled in ingenuity‘ on August 19th, 2015] and elegant modelling [see ‘Credibility is in the eye of the beholder‘ on April 20th, 2016].  In a university course we attempt to lay the foundations for this tacit engineering knowledge; however, much of it is gained in work through experience and becomes regarded by organisations as part of their intellectual assets – the core of their competitiveness and source of their sustainable technology advantage.  In our work on integrated nuclear digital environments, from which digital twins can be spawned, we would like to capture both explicit and tacit knowledge about complex systems throughout their life cycle which will extend beyond the working lives of their designers, builders and operators.  One of the potential advantages of digital twins is as a knowledge management system by duplicating the life of the physical system and thus allowing its safer and cheaper operation in the long-term as well as its eventual decommissioning.   However, besides the very nature of tacit knowledge that makes its capture difficult, we are finding that its perceived value as an intellectual asset renders stakeholders reluctant to discuss it with us; never mind consider how it might be preserved as part of a digital twin.  Research has shown that tacit knowledge sharing is influenced by environmental factors including national culture, leadership characteristics and social networks [Cai et al, 2020].  I suspect that all of these factors were present in the heyday of the UK civil nuclear power industry when it worked together to construct advanced and complex systems; however, it has not built a power station since 1995 and, at the moment, new power stations are cancelled more often than built, which has almost certainly depressed all of these factors.  So, perhaps we should not be surprised by the difficulties encountered in establishing an integrated nuclear digital environment despite its importance for the future of the industry.

Reference: Cai, Y., Song, Y., Xiao, X. and Shi, W., 2020. The Effect of Social Capital on Tacit Knowledge-Sharing Intention: The Mediating Role of Employee Vigor. SAGE Open, 10(3), p.2158244020945722.