Tag Archives: Einstein

Forecasts and chimpanzees throwing darts

During the coronavirus pandemic, politicians have taken to telling us that their decisions are based on the advice of their experts while the news media have bombarded us with predictions from experts.  Perhaps not unexpectedly, with the benefit of hindsight, many of these decisions and predictions appear to be have been ill-advised or inaccurate which is likely to lead to a loss of trust in both politicians and experts.  However, this is unsurprising and the reliability of experts, particularly those willing to make public pronouncements, is well-known to be dubious.  Professor Philip E. Tetlock of the University of Pennsylvania has assessed the accuracy of forecasts made by purported experts over two decades and found that they were little better than a chimpanzee throwing darts.  However, the more well-known experts seemed to be worse at forecasting [Tetlock & Gardner, 2016].  In other words, we should assign less credibility to those experts whose advice is more frequently sought by politicians or quoted in the media.  Tetlock’s research has found that the best forecasters are better at inductive reasoning, pattern detection, cognitive flexibility and open-mindedness [Mellers et al, 2015]. People with these attributes will tend not to express unambiguous opinions but instead will attempt to balance all factors in reaching a view that embraces many uncertainties.  Politicians and the media believe that we want to hear a simple message unadorned by the complications of describing reality; and, hence they avoid the best forecasters and prefer those that provide the clear but usually inaccurate message.  Perhaps that’s why engineers are rarely interviewed by the media or quoted in the press because they tend to be good at inductive reasoning, pattern detection, cognitive flexibility and are open-minded [see ‘Einstein and public engagement‘ on August 8th, 2018].  Of course, this was well-known to the Chinese philosopher, Lao Tzu who is reported to have said: ‘Those who have knowledge, don’t predict. Those who predict, don’t have knowledge.’

References:

Mellers, B., Stone, E., Atanasov, P., Rohrbaugh, N., Metz, S.E., Ungar, L., Bishop, M.M., Horowitz, M., Merkle, E. and Tetlock, P., 2015. The psychology of intelligence analysis: Drivers of prediction accuracy in world politics. Journal of experimental psychology: applied, 21(1):1-14.

Tetlock, P.E. and Gardner, D., 2016. Superforecasting: The art and science of prediction. London: Penguin Random House.

Salt increases nanoparticle diffusion

About two and half years ago, I wrote about an article we had published on the motion of nanoparticles [see ‘Slow moving nanoparticles‘ on December 13th, 2017] in which we had shown that, for very small particles at low concentrations, the motion of a particle is independent of its size and does not flow the well-known Stokes-Einstein law.  Our article presented convincing evidence from experiments to support our conclusions but was light on explanation in terms of the mechanics.  At the end of last year, we published a short article in Scientific Reports, in which we demonstrated that the motion of nanoparticles at low concentrations is dependent on the interaction of van der Waals forces and electrostatic forces.  Van der Waals forces are short-range attractive forces between uncharged molecules due to interacting dipole moments, whereas the electrostatic forces are the repulsion of electric charges.  We changed both of these forces by using salt solutions of different concentration and observing the changes in nanoparticle behaviour.  Increasing the molarity increases the diffusion of the particles until the solution is saturated, as shown in the picture for 50 nanometre diameter gold particles (that’s about half the diameter of a coronavirus particle or one thousandth of the diameter of a human hair).  Our findings have implications for understanding the behaviour of nanoparticles dispersed in biological media, which typically contain salt in solution, because the concentration of salt ions in the medium affects nanoparticle diffusion that has been shown to influence cellular uptake and toxicity.

Sources:

Coglitore D, Edwardson SP, Macko P, Patterson EA, Whelan MP, Transition from fractional to classical Stokes-Einstein behaviour in simple fluids, Royal Society Open Science, 4:170507, 2017.

Giorgi F, Coglitore D, Curran JM, Gilliland D, Macko P, Whelan M, Worth A & Patterson EA, The influence of inter-particle forces on diffusion at the nanoscale, Scientific Reports, 9:12689, 2019.

Do you believe in an afterlife?

‘I believe that energy can’t be destroyed, it can only be changed from one form to another.  There’s more to life than we can conceive of.’ The quote is from the singer and songwriter, Corinne Bailey Rae’s answer to the question: do you believe in an afterlife? [see Inventory in the FT Magazine, October 26/27 2019].  However, the first part of her answer is the first law of thermodynamics while the second part resonates with Erwin Schrödinger’s view on life and consciousness [see ‘Digital hive mind‘ on November 30th, 2016]. The garden writer and broadcaster, Monty Don gave a similar answer to the same question: ‘Absolutely.  I believe that the energy lives on and is connected to place.  I do have this idea of re-joining all of my past dogs and family on a summer’s day, like a Stanley Spencer painting.’ [see Inventory in the FT Magazine, January 18/19 2020].  The boundary between energy and mass is blurry because matter is constructed from atoms and atoms from sub-atomic particles, such as electrons that can behave as particles or waves of energy [see ‘More uncertainty about matter and energy‘ on August 3rd 2016].  Hence, the concept that after death our body reverts to a cloud of energy as the complex molecules of our anatomy are broken down into elemental particles is completely consistent with modern physics.  However, I suspect Rae and Don were going further and suggesting that our consciousness lives on in some form. Perhaps through some kind of unified mind that Schrödinger thought might exist as a consequence of our individual minds networking together to create emergent behaviour.  Schrödinger found it utterly impossible to form an idea about how this might happen and it seems unlikely that an individual mind could ever do so; however, perhaps the more percipient amongst us occasionally gets a hint of the existence of something beyond our individual consciousness.

Reference: Erwin Schrodinger, What is life? with Mind and Matter and Autobiographical Sketches, Cambridge University Press, 1992.

Image: ‘Sunflower and dog worship’ by Stanley Spencer, 1937 @ https://www.bbc.co.uk/news/entertainment-arts-13789029

Fake facts & untrustworthy predictions

I need to confess to writing a misleading post some months ago entitled ‘In Einstein’s footprints?‘ on February 27th 2019, in which I promoted our 4th workshop on the ‘Validation of Computational Mechanics Models‘ that we held last month at Guild Hall of Carpenters [Zunfthaus zur Zimmerleuten] in Zurich.  I implied that speakers at the workshop would be stepping in Einstein’s footprints when they presented their research at the workshop, because Einstein presented a paper at the same venue in 1910.  However, as our host in Zurich revealed in his introductory remarks , the Guild Hall was gutted by fire in 2007 and so we were meeting in a fake, or replica, which was so good that most of us had not realised.  This was quite appropriate because a theme of the workshop was enhancing the credibility of computer models that are used to replicate the real-world.  We discussed the issues surrounding the trustworthiness of models in a wide range of fields including aerospace engineering, biomechanics, nuclear power and toxicology.  Many of the presentations are available on the website of the EU project MOTIVATE which organised and sponsored the workshop as part of its dissemination programme.  While we did not solve any problems, we did broaden people’s understanding of the issues associated with trustworthiness of predictions and identified the need to develop common approaches to support regulatory decisions across a range of industrial sectors – that’s probably the theme for our 5th workshop!

The MOTIVATE project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 754660 and the Swiss State Secretariat for Education, Research and Innovation under contract number 17.00064.

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

Image: https://www.tagesanzeiger.ch/Zunfthaus-Zur-Zimmerleuten-Wiederaufbauprojekt-steht/story/30815219