I spent a lot of time on trains last week. I left Liverpool on Tuesday evening for Bristol and spent Wednesday at Airbus in Filton discussing the implementation of the technologies being developed in the EU Clean Sky 2 projects MOTIVATE and DIMES. On Wednesday evening I travelled to Bracknell and on Thursday gave a seminar at Syngenta on model credibility in predictive toxicology before heading home to Liverpool. But, on Friday I was on the train again, to Manchester this time, to listen to a group of my PhD students presenting their projects to their peers in our new Centre for Doctoral Training called Growing skills for Reliable Economic Energy from Nuclear, or GREEN. The common thread, besides the train journeys, is the Fidelity And Credibility of Testing and Simulation (FACTS). My research group is working on how we demonstrate the fidelity of predictions from models, how we establish trust in both predictions from computational models and measurements from experiments that are often also ‘models’ of the real world. The issues are similar whether we are considering the structural performance of aircraft [as on Wednesday], the impact of agro-chemicals [as on Thursday], or the performance of fusion energy and the impact of a geological disposal site [as on Friday] (see ‘Hierarchical modelling in engineering and biology‘ on March 14th, 2018) . The scientific and technical communities associated with each application talk a different language, in the sense that they use different technical jargon and acronyms; and they are surprised and interested to discover that similar problems are being tackled by communities that they rarely think about or encounter.
Category Archives: structures
On the trustworthiness of multi-physics models
I stayed in Sheffield city centre a few weeks ago and walked past the standard measures in the photograph on my way to speak at a workshop. In the past, when the cutlery and tool-making industry in Sheffield was focussed around small workshops, or little mesters, as they were known, these standards would have been used to check the tools being manufactured. A few hundred years later, the range of standards in existence has extended far beyond the weights and measures where it started, and now includes standards for processes and artefacts as well as for measurements. The process of validating computational models of engineering infrastructure is moving slowly towards establishing an internationally recognised standard [see two of my earliest posts: ‘Model validation‘ on September 18th, 2012 and ‘Setting standards‘ on January 29th, 2014]. We have guidelines that recommend approaches for different parts of the validation process [see ‘Setting standards‘ on January 29th, 2014]; however, many types of computational model present significant challenges when establishing their reliability [see ‘Spatial-temporal models of protein structures‘ on March 27th, 2019]. Under the auspices of the MOTIVATE project, we are gathering experts in Zurich on November 5th, 2019 to discuss the challenges of validating multi-physics models, establishing credibility and the future use of data from experiments. It is the fourth in a series of workshops held previously in Shanghai, London and Munich. For more information and to register follow this link. Come and join our discussions in one of my favourite cities where we will be following ‘In Einstein’s footprints‘ [posted on February 27th, 2019].
The MOTIVATE project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 754660.
The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.
Amazing innovation in metamaterials
Most manufactured things break when you subject them to 90% strain; however Professor Xiaoyu Rayne Zheng of the Department of Mechanical Engineering at Virginia Tech has developed additively-manufactured metamaterials that completely recover from being deformed to this level. Strains are usually defined as the change in length divided by the original length and is limited in most engineering structures to less than 2%, which is the level at which steel experiences permanent deformation. Professor Zheng has developed a microstructure with a recurring architecture over seven orders of magnitude that allows an extraordinary level of elastic recovery; and then his team manufactures the material using microstereolithography. Stereolithography is a form of three-dimensional printing. Professor Zheng presented some of his research at the USAF research review that I attended last month [see ‘When an upgrade is downgrading‘ on August 21st, 2019 and ‘Coverts inspire adaptive wing design’ on September 11th, 2019]. He explained that, when these metamaterials are made out of a piezoelectric nanocomposite, they can be deployed as tactile sensors with directional sensitivity, or smart energy-absorbing materials.
Rayne Zheng and Aimy Wissa [‘Coverts inspire adaptive wing design’ on September 11th, 2019] both made Compelling Presentations [see post on March 21st, 2018] that captured my attention and imagination; and kept my phone in my pocket!
The picture is from https://www.raynexzheng.com/
For details of the additively-manufactured metamaterials see: Zheng, Xiaoyu, William Smith, Julie Jackson, Bryan Moran, Huachen Cui, Da Chen, Jianchao Ye et al. “Multiscale metallic metamaterials.” Nature materials 15, no. 10 (2016): 1100
For details of the piezoelectric metamaterials see: Cui, Huachen, Ryan Hensleigh, Desheng Yao, Deepam Maurya, Prashant Kumar, Min Gyu Kang, Shashank Priya, and Xiaoyu Rayne Zheng. “Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response.” Nature materials 18, no. 3 (2019): 234
Coverts inspire adaptive wing design
Earlier this summer, when we were walking the South West Coastal Path [see ‘The Salt Path‘ on August 14th, 2019], we frequently saw kestrels hovering above the path ahead of us. It is an enthralling sight watching them use the air currents around the cliffs to soar, hang and dive for prey. Their mastery of the air looks effortless. What you cannot see from the ground is the complex motion of their wing feathers changing the shape and texture of their wing to optimise lift and drag. The base of their flight feathers are covered by small flexible feathers called ‘coverts’ or ‘tectrix’, which in flight reduce drag by providing a smooth surface for airflow. However, at low speed, such as when hovering or landing, the coverts lift up and the change the shape and texture of the wing to prevent aerodynamic stalling. In other words, the coverts help the airflow to follow the contour of the wing, or to remain attached to the wing, and thus to generate lift. Aircraft use wing flaps on their trailing edges to achieve the same effect, i.e. to generate sufficient lift at slow speeds, but birds use a more elegant and lighter solution: coverts. Coverts are deployed passively to mitigate stalls in lower speed flight, as in the picture. When I was in the US last month [see ‘When upgrading is downgrading‘ on August 21st, 2019], one of the research reports was by Professor Aimy Wissa of the Department of Mechanical Science & Engineering at the University of Illinois Urbana-Champaign, who is working on ‘Spatially distributed passively deployable structures for stall mitigation‘ in her Bio-inspired Adaptive Morphology laboratory. She is exploring how flaps could be placed over the surface of aircraft wings to deploy in a similar way to a bird’s covert feathers and provide enhanced lift at low speeds. This would be useful for drones and other unmanned air vehicles (UAVs) that need to manoeuvre in confined spaces, for instance in cityscapes.
I must admit that I had occasionally noticed the waves of fluttering small feathers across the back of a bird’s wing but, until I listened to Aimy’s presentation, I had not realised their purpose; perhaps that lack of insight is why I specialised in structural mechanics rather than fluid mechanics with the result that I was worrying about the fatigue life of the wing flaps during her talk.
The picture is from a video available at Kestrel Hovering and Hunting in Cornwall by Paul Dinning.