Category Archives: Engineering

Celebrating engineering success

Today is National Engineering Day [see ‘My Engineering Day’ on November 4th, 2021] whose purpose is to highlight to society how engineers improve lives.  I would like to celebrate the success of two engineers who are amongst the seventy-two engineers elected to the fellowship of the Royal Academy of Engineering this year.  Chris Waldon is leading the design and delivery of a prototype fusion energy plant, targeting 2040, and a path to the commercial viability of fusion.  This is a hugely ambitious undertaking that has the potential to transform our energy supply.  He is the first chief engineer to move the delivery date to within twenty years rather than pushing it further into the future.  My other featured engineer is Elena Rodriguez-Falcon, a leading advocate of innovations in engineering education that focus on encouraging enterprising and socially-conscious approaches to designing and delivering engineering solutions.  These are important developments because we urgently need a more holistic, sustainable and liberal engineering education that produces engineers equipped to tackle the complex challenges facing society.  Of course I am biased having worked and published with both of them.  However, I am not alone in my regard for them and will be joining other Fellows of the Royal Academy of Engineering at a dinner in London next week to celebrate their achievements.

Seeing small changes is a big achievement

Figure 8 from Amjad et al 2022Some years ago I wrote with great excitement about publishing a paper in Royal Society Open Science [see ‘Press release!‘ on November 15th, 2017].  This has become a routine event; however, the excitement returned earlier this month when we had a paper published in the Proceedings of Royal Society of London on ‘A thermal emissions-based real-time monitoring system for in situ detection of cracks’.  The Proceedings were first published in February 1831 and this is only the second time in my career that my group has published a paper in them.  The last time was ten years ago and was also about cracks: ‘Quantitative measurement of plastic strain field at a fatigue crack tip’.  I have already described this earlier work in a post [see ‘Scattering electrons reveal dislocations in material structure’ on November 11th, 2020].  This was the first time that the size and shape of the plastic zone around a crack had been measured directly rather than inferred from other measurements.  It required an expensive scanning electron microscope and a well-equipped laboratory.  In contrast, the work in the paper published this month uses components that can be purchased for the price of a smart phone and assembled into a device not much larger than a smart phone.  The device detects the changes in the temperature distribution over the surface of the metal caused by the propagation of a crack due to repeated loading of the metal.  It is based on the principles of thermoelastic stress analysis [see ‘Counting photons to measure stress‘ on November 18th, 2015], which is a well-established measurement technique that usually requires expensive infra-red cameras.  Our key innovation is to not aim for absolute measurement values, which allows us to ignore calibration requirements, and instead to look for changes in the temperature distribution on the metal surface by extracting feature vectors from the images [see ‘Recognising strain‘ on October 28th 2015].  Our approach lowers the cost of the equipment required by several orders of magnitude, achieves comparable or better resolution of crack growth (around 1 mm) and will function at lower loading frequencies than techniques based on classical thermoelastic stress analysis.  Besides crack analysis, the common theme of the two papers is the innovative use of image processing to identify change, based on the fracture mechanics of crack propagation.

The research reported in this month’s paper was largely performed as part of the DIMES project about which I have written many posts.

The University of Liverpool was the coordinator of the DIMES project and the other partners were Empa, Dantec Dynamics GmbH and Strain Solutions Ltd.  Airbus was the topic manager on behalf of the Clean Sky 2 Joint Undertaking.

Logos of Clean Sky 2 and EUThe DIMES project received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 820951.

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

References:

Amjad, K., Lambert, C.A., Middleton, C.A., Greene, R.J., Patterson, E.A., 2022, A thermal emissions-based real-time monitoring system for in situ detection of cracks, Proc. R. Soc. A., doi: 10.1098/rspa.2021.0796.

Yang, Y., Crimp, M., Tomlinson, R.A., Patterson, E.A., 2012, Quantitative measurement of plastic strain field at a fatigue crack tip, Proc. R. Soc. A., 468(2144):2399-2415.

Image: Figure 8 from Amjad et al, 2022, Proc. R. Soc. A., doi: 10.1098/rspa.2021.0796.

Nudging discoveries along the innovation path

Decorative photograph of a Welsh hillThe path from a discovery to a successful innovation is often tortuous and many good ideas fall by the wayside.  I have periodically reported on progress along the path for our novel technique for extracting feature vectors from maps of strain data [see ‘Recognizing strain‘ on October 28th, 2015] and its application to validating models of structures by comparing predicted and measured data [see ‘Million to one‘ on November 21st, 2018], and to tracking damage in composite materials [see ‘Spatio-temporal damage maps‘ on May 6th, 2020] as well as in metallic aircraft structures [see ‘Out of the valley of death into a hype cycle‘ on February 24th 2021].  As industrial case studies, we have deployed the technology for validation of predictions of structural behaviour of a prototype aircraft cockpit [see ‘The blind leading the blind‘ on May 27th, 2020] as part of the MOTIVATE project and for damage detection during a wing test as part of the DIMES project.  As a result of the experience gained in these case studies, we recently published an enhanced version of our technique for extracting feature vectors that allows us to handle data from irregularly shaped objects or data sets with gaps in them [Christian et al, 2021].  Now, as part of the Smarter Testing project [see ‘Jigsaw puzzling without a picture‘ on October 27th, 2021] and in collaboration with Dassault Systemes, we have developed a web-based widget that implements the enhanced technique for extracting feature vectors and compares datasets from computational models and physical models.  The THEON web-based widget is available together with a video demonstration of its use and a user manual.  We supplied some exemplar datasets based on our work in structural mechanics as supplementary material associated with our publication; however, it is applicable across a wide range of fields including earth sciences, as we demonstrated in our recent work on El Niño events [see ‘From strain measurements to assessing El Niño events‘ on March 17th, 2021].  We feel that we have taken some significant steps along the innovation path which will lead to adoption of our technique by a wider community; but only time will tell whether this technology survives or falls by the wayside despite our efforts to keep it on track.

Bibliography

Christian WJR, Dvurecenska K, Amjad K, Pierce J, Przybyla C & Patterson EA, Real-time quantification of damage in structural materials during mechanical testing, Royal Society Open Science, 7:191407, 2020.

Christian WJ, Dean AD, Dvurecenska K, Middleton CA, Patterson EA. Comparing full-field data from structural components with complicated geometries. Royal Society open science. 8(9):210916, 2021

Dvurecenska K, Graham S, Patelli E & Patterson EA, A probabilistic metric for the validation of computational models, Royal Society Open Science, 5:1180687, 2018.

Middleton CA, Weihrauch M, Christian WJR, Greene RJ & Patterson EA, Detection and tracking of cracks based on thermoelastic stress analysis, R. Soc. Open Sci. 7:200823, 2020.

Wang W, Mottershead JE, Patki A, Patterson EA, Construction of shape features for the representation of full-field displacement/strain data, Applied Mechanics and Materials, 24-25:365-370, 2010.

Are we in a simulation?

Decorative photograph of trains at terminusThe concept of digital twins is gaining acceptance and our ability to generate them is advancing [see ‘Digital twins that thrive in the real-world’ on June 9th, 2021].  It is conceivable that we will be able to simulate many real-world systems in the not-too-distant future.  Perhaps not in my life-time but possibly in this century we will be able to connect these simulations together to create a computer-generated world.  This raises the possibility that other forms of life might have already reached this stage of technology development and that we are living in one of their simulations.  We cannot know for certain that we are not in a simulation but equally we cannot know for certain that we are in a simulation.  If some other life form had reached the stage of being able to simulate the universe then there is a possibility that they would do it for entertainment, so we might exist inside the equivalent of a teenager’s smart phone, or for scientific exploration in which case we might be inside one of thousands of simulations being performed simultaneously in a lab computer to gather statistical evidence on the development of universes.  It seems probable that there would be many more simulations performed for scientific research than for entertainment, so if we are in a simulation then it is more likely that the creator of the simulation is a scientist who is uninterested in this particular one in which we exist.  Of course, an alternative scenario is that humans become extinct before reaching the stage of being able to simulate the world or the universe.  If extinction occurs as a result of our inability to manage the technological advances, which would allow us to simulate the world, then it seems less likely that other life forms would have avoided this fate and so the probability that we are in a simulation should be reduced.  You could also question whether other life forms would have the same motivations or desires to create computer simulations of evolutionary history.  There are lots of reasons for doubting that we are in a computer simulation but it does not seem possible to be certain about it.

David J Chalmers explains the probability that we are in a simulation much more elegantly and comprehensively than me in his book Reality+; virtual worlds and the problems of philosophy, published by Penguin in 2022.