Tag Archives: enterprise

Nuclear winter school

I spent the first full-week of January 2019 at a Winter School for a pair of Centres for Doctoral Training focussed on Nuclear Energy (see NGN CDT & ICO CDT).  Together the two centres involve eight UK universities and most of the key players in the UK industry.  So, the Winter School offers an opportunity for researchers in nuclear science and engineering, from academia and industry, to gather together for a week and share their knowledge and experience with more than 80 PhD students.  Each student gives a report on the progress of their research to the whole gathering as either a short oral presentation or a poster.  It’s an exhausting but stimulating week for everyone due to both the packed programmme and the range of subjects covered from fundamental science through to large-scale engineering and socio-economic issues.

Here are a few things that caught my eye:

First, the images in the thumbnail above which Paul Cosgrove from the University of Cambridge used to introduce his talk on modelling thermal and neutron fluxes.  They could be from an art gallery but actually they are from the VTT Technical Research Centre of Finland and show the geometry of an advanced test reactor [ATR] (top); the rate of collisions in the ATR (middle); and the neutron density distribution (bottom).

Second, a great app for your phone called electricityMap that shows you a live map of global carbon emissions and when you click on a country it reveals the sources of electricity by type, i.e. nuclear, gas, wind etc, as well as imports and exports of electricity.  Dame Sue Ion told us about it during her key-note lecture.  I think all politicians and journalists need it installed on their phones to check their facts before they start talking about energy policy.

Third, the scale of the concrete infrastructure required in current designs of nuclear power stations compared to the reactor vessel where the energy is generated.  The pictures show the construction site for the Vogtle nuclear power station in Georgia, USA (left) and the reactor pressure vessel being lowered into position (right).  The scale of nuclear power stations was one of the reasons highlighted by Steve Smith from Algometrics for why investors are not showing much interest in them (see ‘Small is beautiful and affordable in nuclear power-stations‘ on January 14th, 2015).  Amongst the other reasons are: too expensive (about £25 billion), too long to build (often decades), too back-end loaded (i.e. no revenue until complete), too complicated (legally, economically & socially), too uncertain politically, too toxic due to poor track record of returns to investors, too opaque in terms of management of industry.  That’s quite a few challenges for the next generation of nuclear scientists and engineers to tackle.  We are making a start by creating design tools that will enable mass-production of nuclear power stations (see ‘Enabling or disruptive technology for nuclear engineering?‘ on January 28th, 2015) following the processes used to produce other massive engineering structures, such as the Airbus A380 (see Integrated Digital Nuclear Design Programme); but the nuclear industry has to move fast to catch up with other sectors of the energy business, such as gas-fired powerstations or wind turbines.  If it were to succeed then the energy market would be massively transformed.

 

Making things happen

Engineers make things happen and no one notices them when everything works reliably and smoothly.  You could replace engineers in that sentence by managers.  Managers are responsible for people and organisations while engineers are responsible for the systems that underpin modern life.  You can pair scientists and leaders in the same way.  Scientists discover new knowledge which sets a direction for the future of technology while leaders create a vision for their organisation which also sets the direction for the future.  Then engineers and managers turn the imagined futures into reality. Of course the divisions are fuzzy.  Some of us would be considered engineering scientists because we work at the interface between science and engineering.  And many engineers spend more time managing people and organisations than practising engineering.  However, the bottom-line is that engineers and managers are responsible for the functioning of modern society and deserve greater recognition for their successes; if only to ensure a continuous and diverse flow of talented young people into the professions.  So, here are two Liverpool engineers that have made the news recently for their contributions to engineering: Chris Sutcliffe who was awarded  a prestigious Silver Medal from the Royal Academy of Engineering for his role in driving the development of metal 3D printed implants for use in human and veterinary surgery; and Kate Black who was named as one of the Top 50 Women in Engineering for her work on the development of novel functional materials, using inkjet printing, for the manufacture of electronic and optoelectronic devices.

See ‘Happenstance, not engineering?‘ on November 9th, 2016 for an explanation of why people are quick to assign blame when things go wrong and slow to praise when things go well – it’s all about the relative number of sites in the brain capable of blame and praise.

Fourth industrial revolution

Have you noticed that we are in the throes of a fourth industrial revolution?

The first industrial revolution occurred towards the end of the 18th century with the introduction of steam power and mechanisation.  The second industrial revolution took place at the end of the 19th and beginning of the 20th century and was driven by the invention of electrical devices and mass production.  The third industrial revolution was brought about by computers and automation at the end of the 20th century.  The fourth industrial revolution is happening as result of combining physical and cyber systems.  It is also called Industry 4.0 and is seen as the integration of additive manufacturing, augmented reality, Big Data, cloud computing, cyber security, Internet of Things (IoT), simulation and systems engineering.  Most organisations are struggling with the integration process and, as a consequence, are only exploiting a fraction of the capabilities of the new technology.  Revolutions are, by their nature, disruptive and those organisations that embrace and exploit the innovations will benefit while the existence of the remainder is under threat [see [‘The disrupting benefit of innovation’ on May 23rd, 2018].

Our work on the Integrated Nuclear Digital Environment, on Digital Twins, in the MOTIVATE project and on hierarchical modelling in engineering and biology is all part of the revolution.

Links to these research posts:

Enabling or disruptive technology for nuclear engineering?’ on January 28th, 2015

Can you trust your digital twin?’ on November 23rd, 2016

Getting Smarter’ on June 21st, 2017

‘Hierarchical modelling in engineering and biology’ [March 14th, 2018]

 

Image: Christoph Roser at AllAboutLean.com from https://commons.wikimedia.org/wiki/File:Industry_4.0.png [CC BY-SA 4.0].

Mapping atoms

Typical atom maps of P, Cu, Mn, Ni & Si (clockwise from bottom centre) in 65x65x142 nm sample of steel from Styman et al, 2015.

A couple of weeks ago I wrote about the opening plenary talk at the NNL Sci-Tec conference [‘The disrupting benefit of innovation’ on May 23rd, 2018].  One of the innovations discussed at the conference was the applications of atom probe tomography for understanding the mechanisms underpinning material behaviour.  Atom probe tomography produces three-dimensional maps of the location and type of individual atoms in a sample of material.  It is a destructive technique that uses a high energy pulse to induce field evaporation of ions from the tip of a needle-like sample.  A detector senses the position of the ions and their chemical identity is found using a mass spectrometer.  Only small samples can be examined, typically of the order of 100nm.

A group led by Jonathan Hyde at NNL have been exploring the use of atom probe tomography to understand the post-irradiation annealing of weld material in reactor pressure vessels and to examine the formation of bubbles of rare gases in fuel cladding which trap hydrogen causing material embrittlement.  A set of typical three-dimensional maps of atoms is shown in the thumb-nail from a recent paper by the group (follow the link for the original image).

It is amazing that we can map the location of atoms within a material and we are just beginning to appreciate the potential applications of this capability.  As another presenter at the conference said: ‘Big journeys begin with Iittle steps’.

BTW it was rewarding to see one of our alumni from our CPD course [see ‘Leadership is like shepherding’ on May 10th, 2017] presenting this work at the conference.

Source:

Styman PD, Hyde JM, Parfitt D, Wilford K, Burke MG, English CA & Efsing P, Post-irradiation annealing of Ni-Mn-Si-enriched clusters in a neutron-irradiated RPV steel weld using atom probe tomography, J. Nuclear Materials, 459:127-134, 2015.