Tag Archives: model validation

Spatio-temporal damage maps for composite materials

Earlier this year, my group published a new technique for illustrating the development of damage as a function of both space and time in materials during testing in a laboratory.  The information is presented in a damage-time map and shows where and when damage appears in the material.  The maps are based on the concept that damage represents a change in the structure of the material and, hence, produces changes in the load paths or stress distribution in the material.  We can use any of a number of optical techniques to measure strain, which is directly related to stress, across the surface of the material; and then look for changes in the strain distribution in real-time.  Wherever a permanent change is seen to occur there must also be permanent deformation or damage. We use image decomposition techniques that we developed some time ago [see ‘Recognizing strain‘ on October 28th, 2018], to identify the changes. Our damage-time maps remove the need for skilled operators to spend large amounts of time reviewing data and making subjective decisions.  They also allow a large amount of information to be presented in a single image which makes detailed comparisons with computer predictions easier and more readily quantifiable that, in turn, supports the validation of computational models [see ‘Model validation‘ on September 18th, 2012].

The structural integrity of composite materials is an on-going area of research because we only have a limited understanding of these materials.  It is easy to design structures using materials that have a uniform or homogeneous structure and mechanical properties which do not vary with orientation, i.e. isotropic properties.  For simple components, an engineer can predict the stresses and likely failure modes using the laws of physics, a pencil and paper plus perhaps a calculator.  However, when materials contain fibres embedded in a matrix, such as carbon-fibres in an epoxy resin, then the analysis of structural behaviour becomes much more difficult due to the interaction between the fibres and with the matrix.  Of course, these interactions are also what make these composite materials interesting because they allow less material to be used to achieve the same performance as homogeneous isotropic materials.  There are very many ways of arranging fibres in a matrix as well as many different types of fibres and matrix; and, engineers do not understand most of their interactions nor the mechanisms that lead to failure.

The image shows, on the left, the maximum principal strain in a composite specimen loaded longitudinally in tension to just before failure; and, on the right, the corresponding damage-time map indicating when and where damage developing during the tension loading.

Source:

Christian WJR, Dvurecenska K, Amjad K, Pierce J, Przybyla C & Patterson EA, Real-time quantification of damage in structural materials during mechanical testing, Royal Society Open Science, 7:191407, 2020.

The Stone Raft adrift in the Atlantic Ocean

I spent most of last week at the European Union’s Joint Research Centre in Ispra, Italy.  I have been collaborating with the scientists in  the European Union Reference Laboratory for alternatives to animal testing [EURL ECVAM].  We have been working together on tracking nanoparticles and, more recently, on the validity and credibility of models.  Last week I was there to participate in a workshop on Validation and Acceptance of Artificial Intelligence Models in Health.  I presented our work on the credibility matrix and on a set of factors that we have developed for establishing trust in a model and its predictions. I left the JRC on Friday evening and slipped back in the UK just before she left the Europe Union.  The departure of the UK from Europe reminds me of a novel by José Saramago called ‘The Stone Raft‘ in which the Iberian penisula breaks off from the Europe mainland and drifts around the Atlantic ocean.  The bureaucrats in Europe have to run around dealing with the ensuing disruption while five people in Spain and Portugal are drawn together by surreal events on the stone raft adrift in the ocean.

Fake facts & untrustworthy predictions

I need to confess to writing a misleading post some months ago entitled ‘In Einstein’s footprints?‘ on February 27th 2019, in which I promoted our 4th workshop on the ‘Validation of Computational Mechanics Models‘ that we held last month at Guild Hall of Carpenters [Zunfthaus zur Zimmerleuten] in Zurich.  I implied that speakers at the workshop would be stepping in Einstein’s footprints when they presented their research at the workshop, because Einstein presented a paper at the same venue in 1910.  However, as our host in Zurich revealed in his introductory remarks , the Guild Hall was gutted by fire in 2007 and so we were meeting in a fake, or replica, which was so good that most of us had not realised.  This was quite appropriate because a theme of the workshop was enhancing the credibility of computer models that are used to replicate the real-world.  We discussed the issues surrounding the trustworthiness of models in a wide range of fields including aerospace engineering, biomechanics, nuclear power and toxicology.  Many of the presentations are available on the website of the EU project MOTIVATE which organised and sponsored the workshop as part of its dissemination programme.  While we did not solve any problems, we did broaden people’s understanding of the issues associated with trustworthiness of predictions and identified the need to develop common approaches to support regulatory decisions across a range of industrial sectors – that’s probably the theme for our 5th workshop!

The MOTIVATE project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 754660 and the Swiss State Secretariat for Education, Research and Innovation under contract number 17.00064.

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

Image: https://www.tagesanzeiger.ch/Zunfthaus-Zur-Zimmerleuten-Wiederaufbauprojekt-steht/story/30815219

 

Same problems in a different language

I spent a lot of time on trains last week.  I left Liverpool on Tuesday evening for Bristol and spent Wednesday at Airbus in Filton discussing the implementation of the technologies being developed in the EU Clean Sky 2 projects MOTIVATE and DIMES.  On Wednesday evening I travelled to Bracknell and on Thursday gave a seminar at Syngenta on model credibility in predictive toxicology before heading home to Liverpool.  But, on Friday I was on the train again, to Manchester this time, to listen to a group of my PhD students presenting their projects to their peers in our new Centre for Doctoral Training called Growing skills for Reliable Economic Energy from Nuclear, or GREEN.  The common thread, besides the train journeys, is the Fidelity And Credibility of Testing and Simulation (FACTS).  My research group is working on how we demonstrate the fidelity of predictions from models, how we establish trust in both predictions from computational models and measurements from experiments that are often also ‘models’ of the real world.  The issues are similar whether we are considering the structural performance of aircraft [as on Wednesday], the impact of agro-chemicals [as on Thursday], or the performance of fusion energy and the impact of a geological disposal site [as on Friday] (see ‘Hierarchical modelling in engineering and biology‘ on March 14th, 2018) .  The scientific and technical communities associated with each application talk a different language, in the sense that they use different technical jargon and acronyms; and they are surprised and interested to discover that similar problems are being tackled by communities that they rarely think about or encounter.