Tag Archives: tracking nanoparticles

Seeing things with nanoparticles

Photograph showing optical microscope and ancilliary equipment set up on an optical benchLast week brought excitement and disappointment in approximately equal measures for my research on tracking nanoparticles [see ‘Slow moving nanoparticles‘ on December 13th, 2017 and ‘Going against the flow‘ on February 3rd, 2021]. The disappointment was that our grant proposal on ‘Optical tracking of virus-cell interaction’ was not ranked highly enough to receive funding from Engineering and Physical Sciences Research Council. Rejection is an occupational hazard for academics seeking to win grants and you learn to accept it, learn from the constructive criticism and look for ways of reworking the ideas into a new proposal. If you don’t compete then you can’t win. The excitement was that we have moved our apparatus for tracking nanoparticles into a new laboratory, which has been set up for it, so that we can start work on a pilot study looking at the ‘Interaction of bacteria and viruses with cellular and hard surfaces’.  We are also advertising for a PhD student to start in September 2021 to work on ‘Developing pre-clinical models to optimise nanoparticle based drug delivery for the treatment of diabetic retinopathy‘.  This is an exciting development because it represents our first step from fundamental research on tracking nanoparticles in biological media towards clinical applications of the technology. Diabetic retinopathy is an age-related condition that threatens your sight and currently is managed by delivery of drugs to the inside of the eye which requires frequent visits to a clinic for injections into the vitreous fluid of the eye.  There is potential to use nanoparticles to deliver drugs more efficiently and to support these developments we plan that the PhD student will use our real-time, non-invasive, label-free tracking technology to quantify nanoparticle motion through the vitreous fluid and the interaction of nanoparticles with the cells of the retina.

 

My Engineering Day

Photograph of roof tops and chimneys in Liverpool.Today is ‘This is Engineering’ day organised by the Royal Academy of Engineering to showcase what engineers and engineering really look like, celebrate our impact on the world and shift public perception of engineering towards an appreciation that engineers are a varied and diverse group of people who are critical to solving societal challenges.  You can find out more at https://www.raeng.org.uk/events/online-events/this-is-engineering-day-2020.  I have decided to contribute to ‘This is Engineering’ day by describing what I do on a typical working day as an engineer. 

Last Wednesday was like many other working days during the pandemic.  I got up about 7am went downstairs for breakfast in our kitchen and then climbed back upstairs to my home-office in the attic of our house in Liverpool [see ‘Virtual ascent of Moel Famau’ on April 8th, 2020].  I am lucky in that my home-office is quite separate from the living space in our house and it has a great view over the rooftops.  I arrived there at about 7.45am, opened my laptop, deleted the junk email, and dealt with the emails that were urgent, interesting or could be replied to quickly.  At around 8am, I closed my email and settled down to write the first draft of a proposal for funding to support our research on digital twins [see ‘Tacit hurdle to digital twins’ on August 26th, 2020].  I had organised a meeting earlier in the week with a group of collaborators and now I had the task of converting the ideas from our discussion into a coherent programme of research.  Ninety caffeine-fuelled minutes later, I had to stop for a Google Meet call with a collaborator at Airbus in Toulouse during which we agreed the wording on a statement about the impact our recent research efforts.  At 10am I joined a Skype call for a progress review with a PhD student on our dual PhD programme with National Tsing Hua University in Taiwan, so we were joined by his supervisor in Taiwan where it was 6pm [see ‘Citizens of the World’ on November 27th, 2019].  The PhD student presented some very interesting results on evaluating the waviness of fibres in carbon-fibre composite materials using ultrasound measurements which he had performed in our laboratory in Liverpool.  Despite the local lockdown in Liverpool due to the pandemic, research laboratories on our campus are open and operating at reduced occupancy to allow social distancing.

After the PhD progress meeting, I had a catch-up session with my personal assistant to discuss my schedule for the next couple of weeks before joining a MS-Teams meeting with a couple of colleagues to discuss the implications of our current work on computational modelling and possible future directions.  The remaining hour up to my lunch break was occupied by a conference call with a university in India with whom we are exploring a potential partnership.  I participated in my capacity as Dean of the School of Engineering and joined about twenty colleagues from both institutions discussing possible areas of collaboration in both research and teaching.  Then it was back downstairs for a half-hour lunch break in the kitchen. 

Following lunch, I continued in my role as Dean with a half-hour meeting with Early Career Academics in the School of Engineering followed by internal interviews for the directorship of one of our postgraduate research programmes.  At 3.30pm, I was able to switch back to being a researcher and meet with a collaborator to discuss the prospects for extending our work on tracking synthetic nanoparticles into monitoring the motion of biological entities such as viruses and bacteria [see ‘Modelling from the cell through the individual to the host population’ on May 5th 2020].  Finally, as usual, I spent the last two to three hours of my working day replying to emails, following up on the day’s meetings and preparing for the following day.  One email was a request for help from one of my PhD students working in the laboratory who needed a piece of equipment that had been stored in my office for safekeeping.  So, I made the ten-minute walk to campus to get it for her which gave me the opportunity to talk face-to-face with one of the post-doctoral researchers in my group who is working on the DIMES project [see ‘Condition-monitoring using infra imaging‘ on June 17th, 2020].  After dinner, my wife and I walked down to the Albert Dock and along the river front to Princes Dock and back up to our house.

So that was my Engineering Day last Wednesday!

 

Logos of Clean Sky 2 and EUThe DIMES project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 820951.  The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

The Stone Raft adrift in the Atlantic Ocean

I spent most of last week at the European Union’s Joint Research Centre in Ispra, Italy.  I have been collaborating with the scientists in  the European Union Reference Laboratory for alternatives to animal testing [EURL ECVAM].  We have been working together on tracking nanoparticles and, more recently, on the validity and credibility of models.  Last week I was there to participate in a workshop on Validation and Acceptance of Artificial Intelligence Models in Health.  I presented our work on the credibility matrix and on a set of factors that we have developed for establishing trust in a model and its predictions. I left the JRC on Friday evening and slipped back in the UK just before she left the Europe Union.  The departure of the UK from Europe reminds me of a novel by José Saramago called ‘The Stone Raft‘ in which the Iberian penisula breaks off from the Europe mainland and drifts around the Atlantic ocean.  The bureaucrats in Europe have to run around dealing with the ensuing disruption while five people in Spain and Portugal are drawn together by surreal events on the stone raft adrift in the ocean.