Tag Archives: TSA

Out of the valley of death into a hype cycle?

Fig 5 from Middleton et al with full captionThe capability to identify damage and track its propagation in structures is important in ensuring the safe operation of a wide variety of engineering infrastructure, including aircraft structures. A few years ago, I wrote about research my group was performing, in the INSTRUCTIVE project [see ‘INSTRUCTIVE final reckoning‘ on January 9th, 2019] with Airbus and Strain Solutions Limited, to deliver a new tool for monitoring the development of damage using thermoelastic stress analysis (TSA) [see ‘Counting photons to measure stress‘ on November 18th, 2015].  We collected images using a TSA system while a structural component was subject to cycles of load that caused damage to initiate and propagate during a fatigue test. The series of images were analysed using a technique based on optical flow to identify apparent movement between the images which was taken as indication of the development of damage [1]. We demonstrated that our technique could indicate the presence of a crack less than a millimetre in length and even identify cracks initiating under the heads of bolts using experiments performed in our laboratory [see ‘INSTRUCTIVE update‘ on October 4th, 2017].  However, this technique was susceptible to errors in the images when we tried to use low-cost sensors and to changes in the images caused by flight cycle loading with varying amplitude and frequency of loads.  Essentially, the optical flow approach could be fooled into identifying damage propagation when a sensor delivered a noisy image or the shape of the load cycle was changed.  We have now overcome this short-coming by replacing the optical flow approach with the orthogonal decomposition technique [see ‘Recognising strain‘ on October 28th, 2015] that we developed for comparing data fields from measurements and predictions in validation processes [see ‘Million to one‘ on November 21st, 2018] .  Each image is decomposed to a feature vector and differences between the feature vectors are indicative of damage development (see schematic in thumbnail from [2]).  The new technique, which we have named the differential feature vector method, is sufficiently robust that we have been able to use a sensor costing 1% of the price of a typical TSA system to identify and track cracks during cyclic loading.  The underpinning research was published in December 2020 by the Royal Society [2] and the technique is being implemented in full-scale ground-tests on aircraft structures as part of the DIMES project.  Once again, a piece of technology is emerging from the valley of death [see ‘Slowly crossing the valley of death‘ on January 27th, 2021] and, without wishing to initiate the hype cycle [see ‘Hype cycle‘ on September 23rd, 2015], I hope it will transform the use of thermal imaging for condition monitoring.

Logos of Clean Sky 2 and EUThe INSTRUCTIVE and DIMES projects have received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreements No. 685777 and No. 820951 respectively.

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

References

[1] Middleton CA, Gaio A, Greene RJ & Patterson EA, Towards automated tracking of initiation and propagation of cracks in Aluminium alloy coupons using thermoelastic stress analysis, J. Non-destructive Testing, 38:18, 2019.

[2] Middleton CA, Weihrauch M, Christian WJR, Greene RJ & Patterson EA, Detection and tracking of cracks based on thermoelastic stress analysis, R. Soc. Open Sci. 7:200823, 2020.

Press release!

A jumbo jet has about six million parts of which roughly half are fasteners – that’s a lot of holes.

It is very rare for one of my research papers to be included in a press release on its publication.  But that’s what has happened this month as a consequence of a paper being included in the latest series published by the Royal Society.  The contents of the paper are not earth shattering in terms of their consequences for humanity; however, we have resolved a long-standing controversy about why cracks grow from small holes in structures [see post entitled ‘Alan Arnold Griffith‘ on  April 26th, 2017] that are meant to be protected from such events by beneficial residual stresses around the hole.  This is important for aircraft structures since a civilian airliner can have millions of holes that contain rivets and bolts which hold the structure together.

We have used mechanical tests to assess fatigue life, thermoelastic stress analysis to measure stress distributions [see post entitled ‘Counting photons to measure stress‘ on November 18th, 2015], synchrotron x-ray diffraction to evaluate residual stress inside the metal and microscopy to examine failure surfaces [see post entitled ‘Forensic engineering‘ on July 22nd, 2015].  The data from this diverse set of experiments is integrated in the paper to provide a mechanistic explanation of how cracks exploit imperfections in the beneficial residual stress field introduced by the manufacturing process and can be aided in their growth by occasional but modest overloads, which might occur during a difficult landing or take-off.

The success of this research is particularly satisfying because at its heart is a PhD student supported by a dual PhD programme between the University of Liverpool and National Tsing Hua University in Taiwan.  This programme, which supported by the two partner universities, is in its sixth year of operation with a steady state of about two dozen PhD students enrolled, who divide their time between Liverpool, England and Hsinchu, Taiwan.  The synchrotron diffraction measurements were performed, with a colleague from Sheffield Hallam University, at the European Synchrotron Research Facility (ESRF) in Grenoble, France; thus making this a truly international collaboration.

Source:

Amjad K, Asquith D, Patterson EA, Sebastian CM & Wang WC, The interaction of fatigue cracks with a residual stress field using thermoelastic stress analysis and synchrotron x-ray diffraction experiments, R. Soc. Open Sci. 4:171100.

Red to blue

Some research has a very long incubation time.  Last month, we published a short paper that describes the initial results of research that started just after I arrived in Liverpool in 2011.  There are various reasons for our slow progress, including our caution about the validity of the original idea and the challenges of working across discipline boundaries.  However, we were induced to rush to publication by the realization that others were catching up with us [see blog post and conference paper].  Our title does not give much away: ‘Characterisation of metal fatigue by optical second harmonic generation‘.

Second harmonic generation or frequency doubling occurs when photons interact with a non-linear material and are combined to produce new photons with twice the energy, and hence, twice the frequency and half the wavelength of the original photons.  Photons are discrete packets of energy that, in our case, are supplied in pulses of 2 picoseconds from a laser operating at a wavelength of 800 nanometres (nm).  The photons strike the surface, are reflected, and then collected in a spectrograph to allow us to evaluate the wavelength of the reflected photons.  We look for ones at 400 nm, i.e. a shift from red to blue.

The key finding of our research is that the second harmonic generation from material in the plastic zone ahead of a propagating fatigue crack is different to virgin material that has experienced no plastic deformation.  This is significant because the shape and size of the crack tip plastic zone determines the rate and direction of crack propagation; so, information about the plastic zone can be used to predict the life of a component.  At first sight, this capability appears similar to thermoelastic stress analysis that I have described in Instructive Update on October 4th, 2017; however, the significant potential advantage of second harmonic generation is that the component does not have to be subject to a cyclic load during the measurement, which implies we could study behaviour during a load cycle as well as conduct forensic investigations.  We have some work to do to realise this potential including developing an instrument for routine measurements in an engineering laboratory, rather than an optics lab.

Last week, I promised weekly links to posts on relevant Thermodynamics topics for students following my undergraduate module; so here are three: ‘Emergent properties‘, ‘Problem-solving in Thermodynamics‘, and ‘Running away from tigers‘.