Tag Archives: additive manufacturing

If you don’t succeed, try and try again…

Photograph of S-shaped plateYou would not think it was difficult to build a thin flat metallic plate using a digital description of the plate and a Laser Powder Bed Fusion (L-PBF) machine which can build complex components, such as hip prostheses.  But it is.  As we have discovered since we started our research project on the thermoacoustic response of additively manufactured parts (see ‘Slow start to an exciting new project on thermoacoustic response of AM metals‘ on September 9th, 2020).  L-PBF involves using a laser beam to melt selected regions of a thin layer of metal powder spread over a flat bed.  The selected regions represent a cross-section of the desired three-dimensional component and repeating the process for each successive cross-section results in the additive building of the component as each layer solidifies.  And there in those last four words lies the problem because ‘as each layer solidifies’ the temperature distribution between the layers causes different levels of thermal expansion that results in strains being locked into our thin plates.  Our plates are too thin to build with their plane surfaces horizontal or perpendicular to the laser beam so instead we build them with their plane surface parallel to the laser beam, or vertical like a street sign.  In our early attempts, the residual stresses induced by the locked-in strains caused the plate to buckle into an S-shape before it was complete (see image).  We solved this problem by building buttresses at the edges of the plate.  However, when we remove the buttresses and detach the plate from the build platform, it buckles into a dome-shape.  Actually, you can press the centre of the plate and make it snap back and forth noisily.  While we are making progress in understanding the mechanisms at work, we have some way to go before we can confidently produce flat plates using additive manufacturing that we can use in comparisons with our earlier work on the performance of conventionally, or subtractively, manufactured plates subject to the thermoacoustic loading experienced by the skin of a hypersonic vehicle [see ‘Potential dynamic buckling in hypersonic vehicle skin‘ on July 1st 2020) or the containment walls in a fusion reactor.  Sometimes research is painfully slow but no one ever talks about it.  Maybe because we quickly forget the painful parts once we have a successful outcome to brag about. But it is often precisely the painful repetitions of “try and try again” that allow us to reach the bragging stage of a successful outcome.

The research is funded jointly by the National Science Foundation (NSF) in the USA and the Engineering and Physical Sciences Research Council (EPSRC) in the UK (see Grants on the Web).

References

Silva AS, Sebastian CM, Lambros J and Patterson EA, 2019. High temperature modal analysis of a non-uniformly heated rectangular plate: Experiments and simulations. J. Sound & Vibration, 443, pp.397-410.

Magana-Carranza R, Sutcliffe CJ, Patterson EA, 2021, The effect of processing parameters and material properties on residual forces induced in Laser Powder Bed Fusion (L-PBF). Additive Manufacturing. 46:102192

Slow start to an exciting new project on thermoacoustic response of AM metals

We held the kick-off meeting for a new research project this week.  It’s a three-way collaboration involving three professors based in Portugal, the UK and USA [Chris Sutcliffe, John Lambros at UIUC and me]; so, our kick-off meeting should have involved at least two of us travelling to the laboratory of the third collaborator and spending some time brainstorming about the challenges that we have agreed to tackle over the next three years.  Instead we had a call via Skype and a rather procedural meeting in which we covered all of the issues without really engendering any excitement or sparking any new ideas.  It would appear that we need the stimulus of new environments to maximise our creativity and that we use body language as well as facial expressions to help us reach a friendly consensus on which  crazy ideas are worth pursuing and which should be quietly forgotten.

Our new research project has a long title: ‘Thermoacoustic response of Additively Manufactured metals: A multi-scale study from grain to component scales‘.  In simple terms, we are going to look at whether residual stresses could be designed to be beneficial to the performance of structural parts used in demanding environments such as those found in reusable spacecraft, hypersonic flight vehicles and breeder blankets in fusion reactors.  Residual stresses are often induced during the manufacture of parts and are usually detrimental to the performance of the part.  Our hypothesis is that in additive manufacturing, or 3D printing, we have sufficient control of the manufacture of the part that we can introduce ‘designer stresses’ which will improve the part’s performance in demanding environments.  The research is funded jointly by the National Science Foundation (NSF) in the USA and the Engineering and Physical Sciences Research Council (EPSRC) in the UK and is supported by The MTC and Renishaw plc; you can find out more at Grants on the Web. The research will be building on our recent research on ‘Potential dynamic buckling in hypersonic vehicle skin‘ [posted July 1st, 2020] and earlier work, see ‘Hot stuff‘ on September 13th, 2012.  While the demanding environment is not new to us, we will be using 3D printed parts for the first time instead of components made by conventional (subtractive) machining and taking them to higher temperatures.

The thumbnail shows measured modal shapes for a subtractively-manufactured plate subject to the three temperature regimes: room temperature (left), transverse heating of the centre of the plate (middle) and longitudinal heating on one edge (right) from Silva, A.S., Sebastian, C.M., Lambros, J. and Patterson, E.A., 2019. High temperature modal analysis of a non-uniformly heated rectangular plate: Experiments and simulations. J. Sound & Vibration, 443, pp.397-410.