Poleidoscope (=polariscope + kaleidoscope)

A section from a photoelastic model of turbine disc with a single blade viewed in polarised light to reveal the stress distribution.Last month I wrote about the tedium of collecting data 35 years ago without digital instrumentation and how it led me to work on automation and digitalisation in experimental mechanics [see ‘35 years later and still working on a PhD thesis‘ on September 16th, 2020].  Thirty years ago, one of the leading methods for determining stresses in components was photoelasticity, which uses polarised light to generate fringe patterns in transparent components or models that correspond to the distribution of stress.  The photoelastic fringes can be analysed in a polariscope, of which the basic principles are explained in a note at the end of this post.  During my PhD, I took hundreds of black and white photographs in a polariscope using sheets of 4×5 film, which came in boxes of 25 sheets that you can still buy, and then scanned these negatives using a microdensitometer to digitise the position of the fringes.  About 15 years after my PhD, together with my collaborators, I patented the poleidoscope which is a combination of a polariscope and a kaleidoscope [US patents 6441972 & 5978087] that removes all of that tedium.  It uses the concept of the multi-faceted lens in a child’s kaleidoscope to create several polariscopes within a compound lens attached to a digital camera.  Each polariscope has different polarising elements such that photoelastic fringes are phase-shifted between the set of images generated by the multi-faceted lens.  The phase-shifted fringe patterns can be digitally processed to yield maps of stress much faster and more reliably than any other method.  Photoelastic stress analysis is no longer popular in mainstream engineering or experimental mechanics due to the simplicity and power of digital image correlation [see ‘256 shades of grey‘ on January 22nd, 2014]; however, the poleidoscope has found a market as an inspection device that provides real-time information on residual stresses in glass sheets and silicon wafers during their production.  In 2003, I took study leave for the summer to work with Jon Lesniak at Glass Photonics in Madison, Wisconsin on the commercialisation of the poleidoscope.  Subsequently, Glass Photonics have  sold more than 250 instruments worldwide.

For more information on the poleidoscope see: Lesniak JR, Zhang SJ & Patterson EA, The design and evaluation of the poleidoscope: a novel digital polariscope, Experimental Mechanics, 44(2):128-135, 2004

Note on the Basic principles of photoelasticity: At any point in a loaded component there is a stress acting in every direction. The directions in which the stresses have the maximum and minimum values for the point are known as principal directions. The corresponding stresses are known as maximum and minimum principal stresses. When polarised light enters a loaded transparent component, it is split into two beams. Both beams travel along the same path, but each vibrates along a principal direction and travels at a speed proportional to the associated principal stress. Consequently, the light emerges as two beams vibrating out of phase with one another which when combined produce an interference pattern.   The polarised light is produced by the polariser in the polariscope and the analyser performs the combination. The interference pattern is observed in the polariscope, and the fringes are contours of principal stress difference which are known as isochromatics. When plane polarised light is used black fringes known as isoclinics are superimposed on the isochromatic pattern. Isoclinics indicate points at which the principal directions are aligned to the polarising axes of the polariser and analyser.

Image: a section from a photoelastic model of turbine disc with a single blade viewed in polarised light to reveal the stress distribution.

Slow progress replacing 150 year old infrastructure

Photograph of salvaged section of original gas mainThe Liverpool Gas Light Company was formed in 1816, just as the amount of carbon dioxide in the atmosphere started to rise above the pre-industrial revolution level of 278 ppm. A rival Oil Gas Company was formed in 1823 and became the Liverpool New Gas and Coke Company in 1834. The two rival companies merged in 1848. Last year a piece of cast iron gas main from around this period was salvaged while replacing a gas main on the Dock Road in Liverpool. It was date-stamped 1853. For the last month, works have been underway to replace the original gas main in our street which appears to be of a similar age. The concept of gas-fired central heating using pressurised hot water was developed in the 1830s by Angier March Perkins [1838 US patent], amongst others; but did not become fashionable until the 1850s which coincides approximately with laying of the original gas main in the road outside our house. There is a cavernous coal hole under the pavement (sidewalk) in front of our house which would have been used to store coal that was burned in fireplaces in every room. So, we can deduce that the house, which was built in the early 1830s, did not initially have gas-fired central heating but that it could have been installed sometime in the second half of the 19th century, just as the level of carbon dioxide in the atmosphere started its exponential increase towards today’s level of 412 ppm [monthly average at Mauna Loa Global Monitoring Laboratory for August 2020].  Carbon dioxide represents about 80% of greenhouse gas emissions, according to the US EPA, and heating of commercial and residential properties accounts for 12% of these emissions in the US and for 32% in the UK.  Hence, before our house is two hundred years old, it is likely that we will have converted it to electrical heating in order to reduce its carbon footprint.  We have made a start on the process but it is pointless until our power supply is carbon neutral and progress towards carbon neutrality for electricity generation is painfully slow in the UK and elsewhere [see ‘Inconvenient facts‘ on December 18th, 2019].

You can check live carbon dioxide emissions from electricity generation and consumption using the ElectricityMap.

Turning the screw in dentistry

Dental implant surgery showing implant being screwed into placeTwo weeks ago, I wrote about supervising PhD students and my own PhD thesis [‘35 years later and still working on a PhD thesis‘ on September 16th, 2020].  The tedium of collecting data as a PhD student without digital instrumentation stimulated me to work subsequently on automation in experimental mechanics which ultimately led to projects like INSTRUCTIVE and DIMES.  In INSTRUCTIVE we developed  low-cost digital sensors for tracking damage in components; while in DIMES we are transitioning the technology into the industrial environment using tests on full-scale aircraft systems as demonstrators.  However, my research in automating and digitising measurements in experimental mechanics has not generated my most cited publications; instead, my two most cited papers describe the development and application of results in my PhD thesis to osseointegrated dental implants.  One, published in 1994, describes the ‘Tightening characteristics for screwed joints in osseointegrated dental implants‘; while, the other published two years earlier provides a ‘Theoretical analysis of the fatigue life of fixture screws in osseointegrated dental implants‘.  In other words, the former tells you how to tighten the screws so that the implants do not come loose and the latter how long the screws will survive before they need to be replaced – both quite useful pieces of information for dentists which perhaps explains their continued popularity.

Statistics footnote: my two most cited papers received five times as many citations in the last 18 months and also since publication than the most popular paper from my PhD thesis. The details of the three papers are given below:

Burguete, R.L., Johns, R.B., King, T. and Patterson, E.A., 1994. Tightening characteristics for screwed joints in osseointegrated dental implants. Journal of Prosthetic Dentistry, 71(6), pp.592-599.

Patterson, E.A. and Johns, R.B., 1992. Theoretical analysis of the fatigue life of fixture screws in osseointegrated dental implants. The International journal of oral & maxillofacial implants, 7(1), p.26.

Kenny, B. and Patterson, E.A., 1985. Load and stress distribution in screw threads. Experimental Mechanics, 25(3), pp.208-213.

Logos of Clean Sky 2 and EUThe INSTRUCTIVE and DIMES projects have received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreements No. 685777 and No. 820951 respectively.

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

Image by володимир волощак from Pixabay.

Shaping the mind during COVID-19

Books on a window sillIf you looked closely at our holiday bookshelf in my post on August 12th 2020, you might have spotted ‘The Living Mountain‘ by Nan Shepherd [1893-1981] which a review in the Guardian newspaper described as ‘The finest book ever written on nature and landscape in Britain’.  It is an account of the author’s journeys in the Cairngorm mountains of Scotland.  Although it is  short, only 108 pages, I have to admit that it did not resonate with me and I did not finish it.  However, I did enjoy the Introduction by Robert MacFarlane and the Afterword by Jeanette Winterson, which together make up about a third of the book. MacFarlane draws parallels between Shepherd’s writing and one of her contemporaries, the French philosopher,  Maurice Merleau-Ponty [1908-1961] who was a leading proponent of existentialism and phenomenology.  Existentialists believe that the nature of our existence is based on our experiences, not just what we think but what we do and feel; while phenomenology is about the connections between experience and consciousness.  Echoing Shepherd and in the spirit of Merleau-Ponty, MacFarlane wrote in 2011 in his introduction that ‘we have come increasingly to forget that our minds are shaped by the bodily experience of being in the world’.  It made me think that as the COVID-19 pandemic pushes most university teaching on-line we need to remember that sitting at a computer screen day after day in the same room will shape the mind rather differently to the diverse experiences of the university education of previous generations.  I find it hard to imagine how we can develop the minds of the next generation of engineers and scientists without providing them with real, as opposed to virtual, experiences in the field, design studio, workshop and laboratory.

Source:

Nan Shepherd, The Living Mountain, Edinburgh: Canongate Books Ltd, 2014 (first published in 1977 by Aberdeen University Press)