Tag Archives: MOOC

Laboratory classes thirty years on

Henry Lea Laboratory, The University of Sheffield in the 1960s

I have happy memories of teaching laboratory classes at the University of Sheffield in the mid 1980s and 1990s in the Henry Lea Laboratory.  The laboratory was crammed full of equipment for experiments in mechanics of materials.  We conducted the practical classes on a limited selection of test machines that stood around a set of benches in the centre of the laboratory on which were a series of bench-top experiments for undergraduates.  The outer reaches of the laboratory were packed with test machines of various shapes and sizes that were the domain of the research students and staff.  So, undergraduate students were privileged to conduct their laboratory classes surrounded by research activity – this was one of the advantages of attending a research-intensive university to study engineering.  However, this is not the experience that modern students gain from laboratory classes.  Sheffield, like Liverpool, and many other research-intensive universities has purpose-built teaching laboratories that provide modern spacious facilities for teaching and learning but also segregate undergraduates from the research business of the university.  In the UK, the increase in student numbers, as we moved towards 50% participation in higher education, was probably a prime driver for the design and construction of these facilities.  However, often the growth in student numbers exceeds the planned capacity of the teaching laboratories and the student experience is reduced by being in a group of five or six with only one or two of them being able to get hands-on experience at the same time.  To overcome this problem, I have used practical exercises as homework assignments that can be performed in the kitchen at home by first year students.  These were initially designed for the MOOC on thermodynamics that I developed a few years ago but they work equally well for undergraduate students and allow individuals to gain experience of conducting a simple experiment, recording and processing data, and write a short report about their findings [see post on ‘Blending learning environments‘ on November 14th, 2018 and ‘Slow down time to think [about strain energy]‘ on March 8th, 2017].  I have found that the participation rate is about the same as for traditional laboratory classes but different because students can learn from their mistakes in private and acquire some experimental skills [1].  However, it is a long way from conducting labs for small cohorts in a laboratory where world-class research is in progress.

Reference:

1. Patterson EA, Using everyday examples to engage learners on a massive open online course, IJ Mechanical Engineering Education, doi: 10.1177/0306419018818551, 2018.

Pluralistic ignorance

This semester I am teaching an introductory course in Thermodynamics to undergraduate students using a blended learning approach [see ‘Blended learning environments‘ on November 14th, 2018].  The blend includes formal lectures, example classes, homework assignments, assessed coursework questions and an on-line course, which I delivered as a MOOC a couple of years ago [see ‘Engaging learners on-line‘ on May 25th, 2016].  It is not unusual in a large class, nearly two hundred students this year, that no one asks questions during the lecture; although, at the end of each lecture and example class, a small group of students with questions always forms.  The on-line course has extensive opportunities for asking questions and discussing issues with the instructor and fellow learners.  These opportunities  were used heavily when the course was offered as a MOOC  with 6600 comments posted or 1 every 7.7 minutes!  However, this year the undergraduates have not made any on-line comments and it was a similar situation last year.  Is this a case of pluralistic ignorance?  The term was coined by psychologists Daniel Katz and Floyd Henry Allport in 1931 to describe students who pretend to understand everything explained in class and don’t ask any questions because they believe everyone else in the class has understood everything and they don’t want to damage their reputation with their peers.  Perhaps we have all done it and been very grateful when someone has asked the question that we wanted to ask but did not dare.  Would be it ethical to pretend to be a student and post questions on-line that I know from the MOOC they are likely to want to ask?

Sources:

Patterson EA, Using everyday engineering examples to engage learners on a massive open online course, IJ Mechanical Engineering Education, in press.

Katz D & Allport FH, Students’ attitude, Syracuse, NY: Craftsmann, 1931.

Origgi G, Reputation: what it is and why it matters, Princeton, NJ: Princeton University Press, 2018.

Image: Author speaking at National Tsing Hua University, Taiwan

Blended learning environments

This is the last in the series of posts on Creating A Learning Environment (CALE).  The series has been based on a workshop given periodically by Pat Campbell [of Campbell-Kibler Associates] and me in the UK and USA, except for the last one on ‘Learning problem-solving skills’ on October 24th, 2018 which was derived on talks I gave to students and staff in Liverpool.  In all of these posts, the focus has been on traditional forms of learning environments; however, almost everything that I have described can be transferred to a virtual learning environment, which is what I have done in the two MOOCs [see ‘Engaging learners on-line’ on May 25th, 2016 and ‘Slowing down time to think (about strain energy)’ on March 8th, 2017].

You can illustrate a much wider range of Everyday Engineering Examples on video than is viable in a lecture theatre.  So, for instance, I used my shower to engage the learners and to introduce a little statistical thermodynamics and explain how we can consider the average behaviour of a myriad of atoms.  However, it is not possible to progress through 5Es [see ‘Engage, Explore, Explain, Elaborate and Evaluate’ on August 1st, 2018] in a single step of a MOOC; so, instead I used a step (or sometimes two steps) of the MOOC to address each ‘E’ and cycled around the 5Es about twice per week.  This approach provides an effective structure for the MOOC which appears to have been a significant factor in achieving higher completion rates than in most MOOCs.

In the MOOC, I extended the Everyday Engineering Example concept into experiments set as homework assignments using kitchen equipment.  For instance, in one lab students were asked to measure the efficiency of their kettle.  In another innovation, we developed Clear Screen Technology to allow me to talk to the audience while solving a worked example.  In the photo below, I am calculating the Gibbs energy in the tank of a compressed air powered car in the final week of the MOOC [where we began to transition to more sophisticated examples].

Last academic year, I blended the MOOC on thermodynamics with my traditional first year module by removing half the lectures, the laboratory classes and worked example classes from the module.  They were replaced by the video shorts, homework labs and Clear Screen Technology worked examples respectively from the MOOC.  The results were positive with an increased attendence at lectures and an improved performance in the examination; although some students did not like and did not engage with the on-line material.

Photographs are stills from the MOOC ‘Energy: Thermodynamics in Everyday Life’.

CALE #10 [Creating A Learning Environment: a series of posts based on a workshop given periodically by Pat Campbell and Eann Patterson in the USA supported by NSF and the UK supported by HEA] – although this post is based on recent experience in developing and delivering a MOOC integrated with traditional learning environments.

Depressed by exams

I am not feeling very creative this week, because I am in middle of marking examination scripts; so, this post is going to be short.  I have 20 days to grade at least 1100 questions and award a maximum of 28,400 marks – that’s a lot of decisions for my neurons to handle without being asked to find new ways to network and generate original thoughts for this blog [see my post on ‘Digital hive mind‘ on November 30th, 2016].

It is a depressing task discovering how little I have managed to teach students about thermodynamics, or maybe I should say, how little they have learned.  However, I suspect these feelings are a consequence of the asymmetry of my brain, which has many more sites capable of attributing blame and only one for assigning praise [see my post entitled ‘Happenstance, not engineering‘ on November 9th, 2016].  So, I tend to focus on the performance of the students at the lower end of the spectrum rather than the stars who spot the elegant solutions to the exam problems.

Sources:

Ngo L, Kelly M, Coutlee CG, Carter RM , Sinnott-Armstrong W & Huettel SA, Two distinct moral mechanisms for ascribing and denying intentionality, Scientific Reports, 5:17390, 2015.

Bruek H, Human brains are wired to blame rather than to praise, Fortune, December 4th 2015.