Tag Archives: sustainability

When you invent the ship, you also invent the shipwreck

I recently came across this quote from Paul Virilio, a French philosopher who lived from 1932 to 2018.  Actually, it is only the first part of a statement he made during an interview with Philippe Petit in 1996.  ‘When you invent the ship, you also invent the shipwreck; when you invent the plane you also invent the plane crash; and when you invent electricity, you invent electrocution. Every technology carries its own negativity, which is invented at the same time as technical progress.’  These events have a catastrophic level of negativity; however, there is a more insidious form of negativity induced by every new technology. It arises as a consequence of the second law of thermodynamics which demands that the entropy of the universe increases in all real processes.  In other words, that the degree of disorder in the universe is increased every time we use technology to do something useful, in fact whenever anything happens the second law ensures some negativity.  This implies that the capacity to do something useful, often measured in terms of energy, is decreased not just by doing the useful thing but also by creating disorder.  Technology helps us to do more useful things more quickly; but the downside is that faster processes tend to create more entropy and disorder.  Most of this negativity is not as obvious as a shipwreck or plane crash but instead often takes the form of pollution that eventually and inexorably disrupts the world making it a less hospitable home for us and the rest of nature.  The forthcoming COP26 conference is generating much talk about the need for climate action but very little about the reality that we cannot avoid the demands of the second law and hence need to rethink how, when and what technology we use.


Elaine Moore, When Big Dating leaves you standing, FT Weekend, July 8th, 2021.

Paul Virilio, and Petit Philippe. Politics of the Very Worst, New York: Semiotext(e), 1999, p. 89 (available from https://mitpress.mit.edu/books/politics-very-worst).

Are these the laws of engineering?

While shopping on-line for books during a pandemic lockdown allows you to buy new books, I found it difficult browse online and find new authors. Perhaps because the algorithms employed by the booksellers are too busy guessing my interests or promoting the latest book that they want me to buy. So it was a pleasure to be able to walk into a bookshop again in a couple of months ago. One of the new authors that I discovered was Niall Williams. I have just finished reading his 2019 novel ‘This is happiness‘ which weaves together the life of an Irish village in which nothing ever changes until the coming of electricity, a tale of coming of age and another of burying the past. In the middle of this beautifully-told story, a salesman is extolling the virtues of the electrical gadgets that they can install in their new electrified homes and says that ‘the first law of engineering was to make the world a better place’. The narrator quietly tells us the second law, which the salesman doesn’t state, ‘that without exception everything that was engineered would one day break down … usually one day after each machine had become indispensable to living’. This is a consequence of the second law of thermodynamics, which is that entropy, or disorder, increases in all real processes. Hence, the localised order, which we create when something is engineered, is constantly being eroded until eventually the disorder leads to a break down. Or, as Murphy’s law states ‘Anything that can go wrong will go wrong’. However, the definition of the first law of engineering was the one that caught my eye and resonated with a corny introduction that I used in a talk on why we need to change the way we teach engineering. I played a recording of Louis Armstrong singing ‘What a wonderful world‘ and then talked about the wonderful world that engineers have created before highlighting the unsustainable environmental costs of our ‘wonderful’ engineered world and that it is inaccessible to a large portion of the world’s population. I gave that talk many times to groups of engineering professors in the USA between about 2006 and 2012; maybe I had some impact but there is still a lot of changes needed to achieve a sustainable society. So, the first law of engineering should be to make the world a better place for everyone.


Niall Williams, This is happiness, London: Bloomsbury Publishing, 2019

Lacking creativity

detail tl from abstract painting by Zahrah RI feel that I am moving to the next level of experience with online meetings but I am unsure that it will address the slow down in productivity and a loss of creativity being reported by most leaders of research groups to whom I have spoken recently.  About a month ago, we organised an ‘Away Day’ for all staff in the School of Engineering with plenary presentations, breakout groups and a Q&A session.  Of course, the restrictions induced by the pandemic meant that we were only ‘away’ in the sense of putting aside our usual work routine and it only lasted for half a day because we felt a whole day in an online conference would be counter productive; nevertheless, the feedback was positive from the slightly more than one hundred staff who participated.  On a smaller scale, we have experimented with randomly allocating members of my research team to breakout sessions during research group meetings in an attempt to give everyone a chance to contribute and to stimulate those serendipitous conversations that lead to breakthroughs, or least alternative solutions to explore.  We have also invited external speakers to join our group meetings – last month we had a talk from a researcher in Canada.  We are trying to recreate the environment in which new ideas bubble to the surface during casual conversations at conferences or visits to laboratories; however, I doubt we are succeeding.  The importance of those conversations to creativity and innovation in science is highlighted by the story of how Emmanuelle Charpentier and Jennifer Doudna met for the first time at a conference in Puerto Rico.   While wandering around San Juan on a warm Caribbean evening in 2011 discussing the way bacteria protect themselves against viruses by chopping up the DNA of the virus, they realised that it could be turned into molecular scissors for cutting and editing the genes of any living creature.  They went home after the conference to their labs in Umea University, Sweden and UC Berkeley respectively and collaborated round the clock to implement their idea for which they won this year’s Nobel Prize for Chemistry.  Maybe the story is apocryphal; however, based on my own experience of conversations on the fringes of scientific meetings, they are more productive than the meeting itself and their loss is a significant casualty of the COVID-19 pandemic.  There are people who point to the reduction in the carbon footprint of science research caused by the cancellation of conferences and who argue that, in order to contribute to UN Goals for Sustainable Development, we should not return to gatherings of researchers in locations around the world.  I agree that we should consider our carbon footprint more carefully when once again we can travel to scientific meetings; however, I think the innovations required to achieve the UN Goals will emerge very slowly, or perhaps not all, if researchers are limited to meeting online only.


Clive Cookson, A dynamic Nobel duo with natural chemistry, FT Weekend, 10/11 October 2020.

Image: Extract from abstract by Zahrah Resh.

Inconvenient facts

The latest UN Climate Change Conference in Madrid, which is holding its closing session as I am writing this post, does not appear to have reached any significant conclusions.  Unsurprisingly, vested interests have dominated and there is little agreement on a plan of action to slow down climate change or to mitigate its impact. However, perhaps there is progress because two recent polls imply that 75% of Americans believe humans cause climate change and roughly half say that urgent action is needed.  This is important because the USA has made the largest cumulative contribution to greenhouse gas emissions with 25% of total emissions, followed by the EU-28 at 22% and China at 13%, according to the Our World in Data website.  However, the need for urgent action is being undermined by suggestions that we cannot afford it, or that we will have better technology in the future that will make it easier to act.  However, much of the engineering technology that is needed to remove fossil fuels from our economy is already available.   Of course, the technology will be improved in the future but that is always true because we are continually making technological advances.  We could replace fossil fuels as the energy source for all of our electricity, buildings and heating (31%) and for most of our industry (21%) and transportation (14%) using the technology that is available today and this could eliminate about two-thirds of current global greenhouse gas emissions. The numbers in parentheses are the percentage contributions to global greenhouse gas emissions according to the IPCC. Of course, it would require a massive programme of infrastructure investment; however, if we are serious then the subsidies paid to the oil and gas industry could be redirected toward decarbonising our economies.  According to the IMF, that is approximately $5.2 trillion per year in subsidies, which is about the GDP of Japan.  The science of climate change is well-understood (see for example ‘What happens to emitted carbon‘ and ‘Carbon emissions and surface warming‘) and widely recognised; the engineering technology to mitigate both climate change and its impacts is largely understood and implementation-ready; however, most urgently, we need well-informed public debate about the economic changes required to decarbonise our society.


Mark Maslin, The five corrupt pillars of climate change denial, The Conversation, November 28th, 2019.

United Nations Blog, The drive to a conclusion, December 13th, 2019.

Sandra Laville, Top oil firms spending millions lobbying to block climate change policies, says report, The Guardian, March 22nd 2019.

Footnote: The videos ‘What happens to emitted carbon‘ and ‘Carbon emissions and surface warming‘ are part of a series produced by my colleague, Professor Ric Williams at the University of Liverpool.  He has produced a third one: ‘Paris or Bust‘.