Tag Archives: energy

Storm in a computer

Decorative painting of a stormy seascapeAs part of my undergraduate course on thermodynamics [see ‘Change in focus’ on October 5th, 2022) and in my MOOC on Thermodynamics in Everyday Life [See ‘Engaging learners on-line‘ on May 25th, 2016], I used to ask students to read Chapter 1 ‘The Storm in the Computer’ from Philosophy and Simulation: The Emergence of Synthetic Reason by Manuel Delanda.  It is a mind-stretching read and I recommended that students read it at least twice in order to appreciate its messages.  To support their learning, I provided them with a précis of the chapter that is reproduced below in a slightly modified form.

At the start of the chapter, the simplest emergent properties, such as the temperature and pressure of a body of water in a container, are discussed [see ‘Emergent properties’ on September 16th, 2015].  These properties are described as emergent because they are not the property of a single component of the system, that is individual water molecules but are features of the system as a whole.  They arise from an objective averaging process for the billions of molecules of water in the container.  The discussion is extended to two bodies of water, one hot and one cold brought into contact within one another.  An average temperature will emerge with a redistribution of molecules to create a less ordered state.  The spontaneous flow of energy, as temperature differences cancel themselves, is identified as an important driver or capability, especially when the hot body is continually refreshed by a fire, for instance.  Engineers harness energy gradients or differences and the resultant energy flow to do useful work, for instance in turbines.

However, Delanda does not deviate to discuss how engineers exploit energy gradients.  Instead he identifies the spontaneous flow of molecules, as they self-organise across an energy gradient, as the driver of circulatory flows in the oceans and atmosphere, known as convection cells.  Five to eight convections cells can merge in the atmosphere to form a thunderstorm.  In thunderstorms, when the rising water vapour becomes rain, the phase transition from vapour to liquid releases latent heat or energy that helps sustain the storm system.  At the same time, gradients in electrical charge between the upper and lower sections of the storm generate lightening.

Delanda highlights that emergent properties can be established by elucidating the mechanisms that produce them at one scale and these emergent properties can become the components of a phenomenon at a much larger scale.  This allows scientists and engineers to construct models that take for granted the existence of emergent properties at one scale to explain behaviour at another, which is called ‘mechanism-independence’.  For example, it is unnecessary to model molecular movement to predict heat transfer.  These ideas allow simulations to replicate behaviour at the system level without the need for high-fidelity representations at all scales.  The art of modelling is the ability to decide what changes do, and what changes do not, make a difference, i.e., what to include and exclude.

Source:

Manuel Delanda Philosophy and Simulation: The Emergence of Synthetic Reason, Continuum, London, 2011.

Image: Painting by Sarah Evans owned by the author.

Energy transformations

I mentioned a couple of weeks ago that I am teaching thermodynamics at the moment [see ‘Conversations about engineering over dinner and a haircut‘ on February 16th, 2022].  I am using a blended approach [see ‘ Blended learning environments‘ on November 14th, 2018] to deliver the module to more than 300 first year undergraduate students with one hour in the lecture theatre each week while the students follow the components of the MOOC I developed some years ago [see ‘Free: Energy! Thermodynamics in Everyday Life‘ on November 11th, 2015, and ‘Engaging learners online‘ on May 25th, 2016].  I have found that first year undergraduates are reluctant to participate in the online discussions that are part of the MOOC and so last year I asked them to discuss each topic in small groups with their academic tutor.  I got some very positive feedback from tutors who had interesting and stimulating discussions with their students.  We are repeating the process again this year.  The first discussion is about energy transformations: noting that energy is always conserved but constantly transformed into different forms, each student is asked to start from an energy state of their choice and to trace the transformations backwards until they can go no further.  In the lecture preceding the discussion with their tutor I provide some examples for starting states, including breakfast cereal, a pole vaulter in mid-jump and a bullet train.  I also describe the series of transformations from the Big Bang to tectonic plate movement: after the initial expansion caused by the Big Bang, the universe cooled sufficiently to allow the formation of sub-atomic particles followed by atoms of hydrogen and some helium and lithium that gravity caused to coalesce into clouds which became the early stars, or solar nebula.  A crust formed on the solar nebula which broke away to form planets.  Our planet has a molten core with temperatures varying from 4,400 to 6000 degrees Celsius, compared to around 5,500 degrees on the surface of the sun.  The temperature variation in the Earth’s core cause thermal currents which drive the movement of tectonic plates and so on [see ‘The hills are shadows, and they flow from form to form, and nothing stands‘, on February 9th, 2022].  Most chains of energy transformation lead backwards to the sun and forwards to dissipation of energy into some unusable form which we might call ‘entropy’ [see ‘Life-time battle‘ on January 30th, 2013].

Bringing an end to thermodynamic whoopee

Two weeks ago I used two infographics to illustrate the dominant role of energy use in generating greenhouse gas emissions and the disportionate production of greenhouse gas emission by the rich [see ‘Where we are and what we have‘ on November 24th, 2021].  Energy use is responsible for 73% of global greenhouse gas emissions and 16% of the world’s population are responsible for 38% of global CO2 emissions.  Today’s infographics illustrate the energy flows from source to consumption for the USA (above), UK and Europe (thumbnails below).  In the USA fossil fuels (coal, natural gas and petroleum) are the source of nearly 80% of their energy, in the UK it is a little more than 80% and the chart for Europe is less detailed but the proportion looks similar. COP 26 committed countries to ending ‘support for the international unabated fossil fuel energy sector by the end of 2022’ and recognised ‘investing in unabated fossil-related energy projects increasingly entails both social and economic risks, especially through the form of stranded assets, and has ensuing negative impacts on government revenue, local employment, taxpayers, utility ratepayers and public health.’  However, to reduce our dependency on fossil fuels we need a strategy, a plan of action for a fundamental change in how we power industry, heat our homes and propel our vehicles.  A hydrogen economy requires the production of hydrogen without using fossil fuels, electric cars and electric domestic heating requires our electricity generating capacity to be at least trebled by 2050 in order to hit the net zero target. This scale and speed of  transition to zero-carbon sources is such that it will have to be achieved using an integrated blend of green energy sources, including solar, wind and nuclear energy.  For example, in the UK our current electricity generating capacity is about 76 GW and 1 GW is equivalent to 3.1 million photovoltaic (PV) panels, or 364 utility scale wind turbines [www.energy.gov/eere/articles/how-much-power-1-gigawatt] so trebling capacity from one of these sources alone would imply more than 700 million PV panels, or one wind turbine every square mile.  It is easy to write policies but it is much harder to implement them and make things happen especially when transformational change is required.  We cannot expect things to happen simply because our leaders have signed agreements and made statements.  Now, national plans are required to ween us from our addiction to fossil fuels – it will be difficult but the alternative is that global warming might cause the planet to become uninhabitable for us.  It is time to stop ‘making thermodynamic whoopee with fossil fuels’ to quote Kurt Vonnegut [see ‘And then we discovered thermodynamics‘ on February 3rd, 2016].

 

 

 

 

 

 

 

 

 

Sources:

Kurt Vonnegut, A Man without a Country, New York: Seven Stories Press, 2005.  He wrote ‘we have now all but destroyed this once salubrious planet as a life-support system in fewer than two hundred years, mainly by making thermodynamic whoopee with fossil fuels’.

US Energy flow chart: https://flowcharts.llnl.gov/commodities/energy

EU Energy flow chart: https://ec.europa.eu/eurostat/web/energy/energy-flow-diagrams

UK Energy flow chart: https://www.gov.uk/government/collections/energy-flow-charts#2020

Where we are and what we have

Pie chart showing green house gas emissions by sectorIn his closing statement at COP26 in Glasgow earlier this month, António Guterres, the Secretary-General of the UN stated that ‘Science tells us that the absolute priority must be rapid, deep and sustained emissions reductions in this decade. Specifically – a 45% cut by 2030 compared to 2010 levels.’   About three-quarters of global green house gas emissions are carbon dioxide (30.4 billions tons in 2010 according to the IEA). A reduction in carbon emissions of 45% by 2030 would reduce this to 16.7 billion tons or an average of about 2 tons per person per year (tCO2/person/yr) allowing for the predicted 9% growth in the global population to 8.5 billion people by 2030. This requires the average resident of Asia, Europe and North America to reduce their carbon emissions to about a half, a quarter and a tenth respectively of their current levels (3.8, 7.6 & 17.6 tCO2/person/yr respectively, see the graphic below and ‘Two Earths‘ on August 13th, 2012).  These are massive reductions to achieve in a very short timescale, less than a decade.  Lots of people are talking about global and national targets; however, very few people have any idea at all about how to achieve the massive reductions in emissions being talked about at COP26 and elsewhere.  The graphic above shows global greenhouse gas emissions by sector with almost three-quarters arising from our use of energy to make stuff (energy use in industry: 24%), to move stuff and us (transport: 16%), and to use stuff and keep us comfortable (energy use in building: 17.5%).  Hence, to achieve the target reductions in emissions and prevent the temperature of the planet rising more than 1.5 degrees compared to pre-industrial levels, we need to stop making, buying, moving and consuming stuff.  We need to learn to live with our local climate because cooling and heating buildings consumes energy and heats the planet.  And, we need to use public transport, a bicycle or walk.  By the way, for stuff read all matter, materials, articles, i.e., everything!  We will need to be satisfied with where we are and what we have, to learn to love old but serviceable belongings [see ‘Loving the daily current of existence‘ on August 11th, 2021 and ‘Old is beautiful‘ on May 1st, 2013].

Infographic showing CO2 emission by region and wealth