Tag Archives: green house gas emissions

Where we are and what we have

Pie chart showing green house gas emissions by sectorIn his closing statement at COP26 in Glasgow earlier this month, António Guterres, the Secretary-General of the UN stated that ‘Science tells us that the absolute priority must be rapid, deep and sustained emissions reductions in this decade. Specifically – a 45% cut by 2030 compared to 2010 levels.’   About three-quarters of global green house gas emissions are carbon dioxide (30.4 billions tons in 2010 according to the IEA). A reduction in carbon emissions of 45% by 2030 would reduce this to 16.7 billion tons or an average of about 2 tons per person per year (tCO2/person/yr) allowing for the predicted 9% growth in the global population to 8.5 billion people by 2030. This requires the average resident of Asia, Europe and North America to reduce their carbon emissions to about a half, a quarter and a tenth respectively of their current levels (3.8, 7.6 & 17.6 tCO2/person/yr respectively, see the graphic below and ‘Two Earths‘ on August 13th, 2012).  These are massive reductions to achieve in a very short timescale, less than a decade.  Lots of people are talking about global and national targets; however, very few people have any idea at all about how to achieve the massive reductions in emissions being talked about at COP26 and elsewhere.  The graphic above shows global greenhouse gas emissions by sector with almost three-quarters arising from our use of energy to make stuff (energy use in industry: 24%), to move stuff and us (transport: 16%), and to use stuff and keep us comfortable (energy use in building: 17.5%).  Hence, to achieve the target reductions in emissions and prevent the temperature of the planet rising more than 1.5 degrees compared to pre-industrial levels, we need to stop making, buying, moving and consuming stuff.  We need to learn to live with our local climate because cooling and heating buildings consumes energy and heats the planet.  And, we need to use public transport, a bicycle or walk.  By the way, for stuff read all matter, materials, articles, i.e., everything!  We will need to be satisfied with where we are and what we have, to learn to love old but serviceable belongings [see ‘Loving the daily current of existence‘ on August 11th, 2021 and ‘Old is beautiful‘ on May 1st, 2013].

Infographic showing CO2 emission by region and wealth

Slow progress replacing 150 year old infrastructure

Photograph of salvaged section of original gas mainThe Liverpool Gas Light Company was formed in 1816, just as the amount of carbon dioxide in the atmosphere started to rise above the pre-industrial revolution level of 278 ppm. A rival Oil Gas Company was formed in 1823 and became the Liverpool New Gas and Coke Company in 1834. The two rival companies merged in 1848. Last year a piece of cast iron gas main from around this period was salvaged while replacing a gas main on the Dock Road in Liverpool. It was date-stamped 1853. For the last month, works have been underway to replace the original gas main in our street which appears to be of a similar age. The concept of gas-fired central heating using pressurised hot water was developed in the 1830s by Angier March Perkins [1838 US patent], amongst others; but did not become fashionable until the 1850s which coincides approximately with laying of the original gas main in the road outside our house. There is a cavernous coal hole under the pavement (sidewalk) in front of our house which would have been used to store coal that was burned in fireplaces in every room. So, we can deduce that the house, which was built in the early 1830s, did not initially have gas-fired central heating but that it could have been installed sometime in the second half of the 19th century, just as the level of carbon dioxide in the atmosphere started its exponential increase towards today’s level of 412 ppm [monthly average at Mauna Loa Global Monitoring Laboratory for August 2020].  Carbon dioxide represents about 80% of greenhouse gas emissions, according to the US EPA, and heating of commercial and residential properties accounts for 12% of these emissions in the US and for 32% in the UK.  Hence, before our house is two hundred years old, it is likely that we will have converted it to electrical heating in order to reduce its carbon footprint.  We have made a start on the process but it is pointless until our power supply is carbon neutral and progress towards carbon neutrality for electricity generation is painfully slow in the UK and elsewhere [see ‘Inconvenient facts‘ on December 18th, 2019].

You can check live carbon dioxide emissions from electricity generation and consumption using the ElectricityMap.

Inconvenient facts

The latest UN Climate Change Conference in Madrid, which is holding its closing session as I am writing this post, does not appear to have reached any significant conclusions.  Unsurprisingly, vested interests have dominated and there is little agreement on a plan of action to slow down climate change or to mitigate its impact. However, perhaps there is progress because two recent polls imply that 75% of Americans believe humans cause climate change and roughly half say that urgent action is needed.  This is important because the USA has made the largest cumulative contribution to greenhouse gas emissions with 25% of total emissions, followed by the EU-28 at 22% and China at 13%, according to the Our World in Data website.  However, the need for urgent action is being undermined by suggestions that we cannot afford it, or that we will have better technology in the future that will make it easier to act.  However, much of the engineering technology that is needed to remove fossil fuels from our economy is already available.   Of course, the technology will be improved in the future but that is always true because we are continually making technological advances.  We could replace fossil fuels as the energy source for all of our electricity, buildings and heating (31%) and for most of our industry (21%) and transportation (14%) using the technology that is available today and this could eliminate about two-thirds of current global greenhouse gas emissions. The numbers in parentheses are the percentage contributions to global greenhouse gas emissions according to the IPCC. Of course, it would require a massive programme of infrastructure investment; however, if we are serious then the subsidies paid to the oil and gas industry could be redirected toward decarbonising our economies.  According to the IMF, that is approximately $5.2 trillion per year in subsidies, which is about the GDP of Japan.  The science of climate change is well-understood (see for example ‘What happens to emitted carbon‘ and ‘Carbon emissions and surface warming‘) and widely recognised; the engineering technology to mitigate both climate change and its impacts is largely understood and implementation-ready; however, most urgently, we need well-informed public debate about the economic changes required to decarbonise our society.

Sources:

Mark Maslin, The five corrupt pillars of climate change denial, The Conversation, November 28th, 2019.

United Nations Blog, The drive to a conclusion, December 13th, 2019.

Sandra Laville, Top oil firms spending millions lobbying to block climate change policies, says report, The Guardian, March 22nd 2019.

Footnote: The videos ‘What happens to emitted carbon‘ and ‘Carbon emissions and surface warming‘ are part of a series produced by my colleague, Professor Ric Williams at the University of Liverpool.  He has produced a third one: ‘Paris or Bust‘.