Tag Archives: carbon dioxide

Slow progress replacing 150 year old infrastructure

Photograph of salvaged section of original gas mainThe Liverpool Gas Light Company was formed in 1816, just as the amount of carbon dioxide in the atmosphere started to rise above the pre-industrial revolution level of 278 ppm. A rival Oil Gas Company was formed in 1823 and became the Liverpool New Gas and Coke Company in 1834. The two rival companies merged in 1848. Last year a piece of cast iron gas main from around this period was salvaged while replacing a gas main on the Dock Road in Liverpool. It was date-stamped 1853. For the last month, works have been underway to replace the original gas main in our street which appears to be of a similar age. The concept of gas-fired central heating using pressurised hot water was developed in the 1830s by Angier March Perkins [1838 US patent], amongst others; but did not become fashionable until the 1850s which coincides approximately with laying of the original gas main in the road outside our house. There is a cavernous coal hole under the pavement (sidewalk) in front of our house which would have been used to store coal that was burned in fireplaces in every room. So, we can deduce that the house, which was built in the early 1830s, did not initially have gas-fired central heating but that it could have been installed sometime in the second half of the 19th century, just as the level of carbon dioxide in the atmosphere started its exponential increase towards today’s level of 412 ppm [monthly average at Mauna Loa Global Monitoring Laboratory for August 2020].  Carbon dioxide represents about 80% of greenhouse gas emissions, according to the US EPA, and heating of commercial and residential properties accounts for 12% of these emissions in the US and for 32% in the UK.  Hence, before our house is two hundred years old, it is likely that we will have converted it to electrical heating in order to reduce its carbon footprint.  We have made a start on the process but it is pointless until our power supply is carbon neutral and progress towards carbon neutrality for electricity generation is painfully slow in the UK and elsewhere [see ‘Inconvenient facts‘ on December 18th, 2019].

You can check live carbon dioxide emissions from electricity generation and consumption using the ElectricityMap.

Are we all free riders?

girl in smogThe ‘tragedy of the commons’ is an economic theory founded on the idea that when there is unregulated use of a shared resource then the rational consumer, acting independently and in their own interests, will maximise their consumption leading to the depletion or destruction of the resource.  For example, if there is no cost or limit to grazing sheep on common land then a rational shepherd would maximise their flock size in order to maximise profit.  Eventually, the commons’ ability to sustain the sheep is overwhelmed and it becomes a wasteland.  Are we all taking a free ride on the world’s ecosystem?  Our cars and houses freely pump out huge quantities of carbon dioxide that are overwhelming our ecosystem.  Most of us do nothing – either because we refuse to believe the evidence, or we believe it is not in our interests to act, or we don’t think it is our problem, or we don’t know what to do, or a combination of these excuses.

This might seem a low priority to you.  But, for the 40% of the world’s population that live in the five countries with the worst air quality, it is a high priority.  If you visit these countries, you experience days when it is difficult to breathe because the pollution is so bad and it is hard to read your smartphone because the air is so thick with particles.  We are all part of a single ecosystem on the planet, Gaia if you like, and we are joined to one another through a myriad of connections.  So we ignore this issue at our peril, or the peril of our grandchildren.

It seems unlikely that our leaders will take effective coordinated action and so grass roots action is needed as suggested by Kofi AnnanAssess your carbon footprint now and think about ways to become carbon neutral.  If you want to find out the carbon footprint of your organization then the Carbon Trust has useful information and services.


The Economist Pocket World in Figures 2015 edition, Profile Books Ltd, London 2014

Thumbnail: http://blogs-images.forbes.com/benjaminshobert/files/2015/01/China_Smog2-1940×1293.jpg

The ‘other’ CO2 problem

163-6306_IMGMost of us are aware of the rising levels of anthropogenic carbon dioxide in the atmosphere and its impact on climate change but what about the potential loss of our oxygen supply? Far fewer of us are aware of what is sometimes referred to as the ‘other’ carbon dioxide problem, which is the acidification of the oceans. Carbon dioxide dissolves in the surface of the ocean when the concentration in the water is lower than in the atmosphere. Joanne Hopkins of the National Oceanography Centre in Liverpool describes this as the reverse of bubbles escaping when you open a fizzy drink, because the concentration of carbon dioxide in the air is less than in the drink. Carbon dioxide is also taken up in the ocean by tiny marine plants, known as phytoplankton, which convert it into organic matter and oxygen. Tiny marine animals, known as zooplankton, eat the phytoplankton and in turn are eaten and so on. Phytoplankton are important not just because they are the bottom of the food chain but also because they produce about half the oxygen that we breathe. The problem is that dissolved carbon dioxide is shifting the pH balance of the oceans which is beginning to cause demineralisation of microorganisms the ocean. At a recent Royal Society Regional Meeting in Bristol, Professor Daniela Schmidt described this as analogous to osteoporosis, a ‘brittle’ bone disease suffered by humans. Many years ago, my research group worked with a pathologist, Dr Dennis Cotton to examine whether it was possible that osteoporosis sufferers could break their leg and fall over rather than fall over and break their leg. In other words, could osteoporosis change the material properties of bone so dramatically that the structural integrity was insufficient for everyday activities such as getting out of bed or walking upstairs? Our answers at the time were inconclusive, at least in the generic case. Professor Schmidt is working with another team of engineers to examine the structural integrity of microorganisms in the oceans and the impact of demineralisation. The concern is that they could become structurally unstable and die and this could lead to a major reduction in our oxygen supply.

Ok, there is a lot of uncertainty about the series of interactions described above, about the magnitude of the effects and about the ability of ecosystems to adapt to the new conditions. However, the potential consequences are so catastrophic that we should not ignore them. Urgent action is needed to reduce our production of carbon dioxide, and since our governments appear incapable of action we have to take individual responsibilty as advocated by Kofi Annan and reported in my post entitled ‘New Year Resolution’ on December 31st, 2014.

By the way, look out for the announcement of the $2M Wendy Schmidt Ocean Health XPrize on July 20th to one of five teams of scientists for the best sensor for making real-time measurements of ocean acidity.


Bell R, The removal of a service we can’t do without’, The Observer, 25.01.15.

Schmidt D, Some don’t like it hot, Geology, 42(9):831-832, 2014.

Brodie et al, The future of the northeast Atlantic benthic flora in a high CO2 world, Ecology and Evolution, 4(13):2787-2798, 2014.

Cotton DWK, Whitehead CL, Vyas S, Cooper C & Patterson EA, Are hip fractures caused by falling and breaking or breaking and falling? Photoelastic stress analysis, Forensic Science Int. 65: 105-112, 1994.