Tag Archives: blended learning

Thermodynamics labs as homework

Many of my academic colleagues are thinking about modifying their undergraduate teaching for next academic year so that they are more resilient to coronavirus.  Laboratory classes present particular challenges when access and density of occupation are restricted.  However, if the purpose of laboratory classes is to allow students to experience phenomena, to enhance understanding, to develop intuition and to acquire skills in using equipment, making measurements and analysing data, then I believe this can achieved using practical exercises for homework.  I created practical exercises, that can be performed in a kitchen at home, as part of a Massive Open Online Course (MOOC) about thermodynamics [See ‘Engaging learners on-line‘ on May 25th, 2016].  I have used the same exercises as part of my first year undergraduate module on thermodynamics for the past four years with similar levels of participation to those experienced by my colleagues who run traditional laboratory classes [see ‘Laboratory classes thirty years on‘ on May 15th, 2019].  I have had a number of enquiries from colleagues in other universities about these practical exercises and so I have decided to make the instruction sheets available to all.  Please feel free to use them to support your teaching.

The versions below are from the MOOC entitled ‘Energy: Thermodynamics in Everyday Life‘ and provide information about where to obtain the small amount of equipment needed, and hence are self-contained.  Although the equipment only costs about £20, at the University of Liverpool, we lend our students a small bag of equipment containing a measuring beaker, a digital thermometer, a plug-in power meter and a plumber’s manometer.  I also use a slightly different version of these instructions sheets that provide information about ‘lab’ reports that students must submit as part of their coursework.

I reported on the initial introduction of blended learning and these practical exercises in Patterson EA, 2019, Using everyday examples to engage learners on a massive open online course, IJ Mechanical Engineering Education, 0306419018818551.

Instruction sheets for thermodynamics practical exercises as homework:

Energy balance using the first law of thermodynamics | Efficiency of a kettle

Ideal gas behaviour | Estimating the value of absolute zero

Overall heat transfer coefficient | Heat losses from a coffee cup & glass

 

 

Pluralistic ignorance

This semester I am teaching an introductory course in Thermodynamics to undergraduate students using a blended learning approach [see ‘Blended learning environments‘ on November 14th, 2018].  The blend includes formal lectures, example classes, homework assignments, assessed coursework questions and an on-line course, which I delivered as a MOOC a couple of years ago [see ‘Engaging learners on-line‘ on May 25th, 2016].  It is not unusual in a large class, nearly two hundred students this year, that no one asks questions during the lecture; although, at the end of each lecture and example class, a small group of students with questions always forms.  The on-line course has extensive opportunities for asking questions and discussing issues with the instructor and fellow learners.  These opportunities  were used heavily when the course was offered as a MOOC  with 6600 comments posted or 1 every 7.7 minutes!  However, this year the undergraduates have not made any on-line comments and it was a similar situation last year.  Is this a case of pluralistic ignorance?  The term was coined by psychologists Daniel Katz and Floyd Henry Allport in 1931 to describe students who pretend to understand everything explained in class and don’t ask any questions because they believe everyone else in the class has understood everything and they don’t want to damage their reputation with their peers.  Perhaps we have all done it and been very grateful when someone has asked the question that we wanted to ask but did not dare.  Would be it ethical to pretend to be a student and post questions on-line that I know from the MOOC they are likely to want to ask?

Sources:

Patterson EA, Using everyday engineering examples to engage learners on a massive open online course, IJ Mechanical Engineering Education, in press.

Katz D & Allport FH, Students’ attitude, Syracuse, NY: Craftsmann, 1931.

Origgi G, Reputation: what it is and why it matters, Princeton, NJ: Princeton University Press, 2018.

Image: Author speaking at National Tsing Hua University, Taiwan

Depressed by exams

I am not feeling very creative this week, because I am in middle of marking examination scripts; so, this post is going to be short.  I have 20 days to grade at least 1100 questions and award a maximum of 28,400 marks – that’s a lot of decisions for my neurons to handle without being asked to find new ways to network and generate original thoughts for this blog [see my post on ‘Digital hive mind‘ on November 30th, 2016].

It is a depressing task discovering how little I have managed to teach students about thermodynamics, or maybe I should say, how little they have learned.  However, I suspect these feelings are a consequence of the asymmetry of my brain, which has many more sites capable of attributing blame and only one for assigning praise [see my post entitled ‘Happenstance, not engineering‘ on November 9th, 2016].  So, I tend to focus on the performance of the students at the lower end of the spectrum rather than the stars who spot the elegant solutions to the exam problems.

Sources:

Ngo L, Kelly M, Coutlee CG, Carter RM , Sinnott-Armstrong W & Huettel SA, Two distinct moral mechanisms for ascribing and denying intentionality, Scientific Reports, 5:17390, 2015.

Bruek H, Human brains are wired to blame rather than to praise, Fortune, December 4th 2015.