Tag Archives: design

Amazing innovation in metamaterials

Most manufactured things break when you subject them to 90% strain; however Professor Xiaoyu Rayne Zheng of the Department of Mechanical Engineering at Virginia Tech has developed additively-manufactured metamaterials that completely recover from being deformed to this level.  Strains are usually defined as the change in length divided by the original length and is limited in most engineering structures to less than 2%, which is the level at which steel experiences permanent deformation.  Professor Zheng has developed a microstructure with a recurring architecture over seven orders of magnitude that allows an extraordinary level of elastic recovery; and then his team manufactures the material using microstereolithography.  Stereolithography is a form of three-dimensional printing.  Professor Zheng presented some of his research at the USAF research review that I attended last month [see ‘When an upgrade is downgrading‘ on August 21st, 2019 and ‘Coverts inspire adaptive wing design’ on September 11th, 2019].  He explained that, when these metamaterials are made out of a piezoelectric nanocomposite, they can be deployed as tactile sensors with directional sensitivity, or smart energy-absorbing materials.

Rayne Zheng and Aimy Wissa [‘Coverts inspire adaptive wing design’ on September 11th, 2019] both made Compelling Presentations [see post on March 21st, 2018] that captured my attention and imagination; and kept my phone in my pocket!

The picture is from https://www.raynexzheng.com/

For details of the additively-manufactured metamaterials see: Zheng, Xiaoyu, William Smith, Julie Jackson, Bryan Moran, Huachen Cui, Da Chen, Jianchao Ye et al. “Multiscale metallic metamaterials.” Nature materials 15, no. 10 (2016): 1100

For details of the piezoelectric metamaterials see: Cui, Huachen, Ryan Hensleigh, Desheng Yao, Deepam Maurya, Prashant Kumar, Min Gyu Kang, Shashank Priya, and Xiaoyu Rayne Zheng. “Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response.” Nature materials 18, no. 3 (2019): 234

Coverts inspire adaptive wing design

Earlier this summer, when we were walking the South West Coastal Path [see ‘The Salt Path‘ on August 14th, 2019], we frequently saw kestrels hovering above the path ahead of us.  It is an enthralling sight watching them use the air currents around the cliffs to soar, hang and dive for prey.  Their mastery of the air looks effortless.  What you cannot see from the ground is the complex motion of their wing feathers changing the shape and texture of their wing to optimise lift and drag.  The base of their flight feathers are covered by small flexible feathers called ‘coverts’ or ‘tectrix’, which in flight reduce drag by providing a smooth surface for airflow.  However, at low speed, such as when hovering or landing, the coverts lift up and the change the shape and texture of the wing to prevent aerodynamic stalling.  In other words, the coverts help the airflow to follow the contour of the wing, or to remain attached to the wing, and thus to generate lift.  Aircraft use wing flaps on their trailing edges to achieve the same effect, i.e. to generate sufficient lift at slow speeds, but birds use a more elegant and lighter solution: coverts.  Coverts are deployed passively to mitigate stalls in lower speed flight, as in the picture.  When I was in the US last month [see ‘When upgrading is downgrading‘ on August 21st, 2019], one of the research reports was by Professor Aimy Wissa of the Department of Mechanical Science & Engineering at the University of Illinois Urbana-Champaign, who is working on ‘Spatially distributed passively deployable structures for stall mitigation‘ in her Bio-inspired Adaptive Morphology laboratory.  She is exploring how flaps could be placed over the surface of aircraft wings to deploy in a similar way to a bird’s covert feathers and provide enhanced lift at low speeds.  This would be useful for drones and other unmanned air vehicles (UAVs) that need to manoeuvre in confined spaces, for instance in cityscapes.

I must admit that I had occasionally noticed the waves of fluttering small feathers across the back of a bird’s wing but, until I listened to Aimy’s presentation, I had not realised their purpose; perhaps that lack of insight is why I specialised in structural mechanics rather than fluid mechanics with the result that I was worrying about the fatigue life of the wing flaps during her talk.

 

The picture is from a video available at Kestrel Hovering and Hunting in Cornwall by Paul Dinning.

 

Joining the dots

Six months ago, I wrote about ‘Finding DIMES’ as we kicked off a new EU-funded project to develop an integrated measurement system for identifying and tracking damage in aircraft structures.  We are already a quarter of the way through the project and we have a concept design for a modular measurement system based on commercial off-the-shelf components.  We started from the position of wanting our system to provide answers to four of the five questions that Farrar & Worden [1] posed for structural health monitoring systems in 2007; and, in addition to provide information to answer the fifth question.  The five questions are: Is there damage? Where is the damage? What kind of damage is present? How severe is the damage?  And, how much useful life remains?

During the last six months our problem definition has evolved through discussions with our EU Topic Manager, Airbus, to four objectives, namely: to quantify applied loads; to provide condition-led/predictive maintenance; to find indications of damage in composites of 6mm diameter or greater and in metal to detect cracks longer than 1mm; and to provide a digital solution.  At first glance there may not appear to be much connection between the initial problem definition and the current version; but actually, they are not very far apart although the current version is more specific.  This evolution from the idealised vision to the practical goal is normal in engineering projects.

We plan to use point sensors, such as resistance strain gauges or fibre Bragg gratings, to quantify applied loads and track usage history; while imaging sensors will allow us to measure strain fields that will provide information about the changing condition of the structure using the image decomposition techniques developed in previous EU-funded projects: ADVISE, VANESSA (see ‘Setting standards‘ on January 29th, 2014) and INSTRUCTIVE.  We will use these techniques to identify and track cracks in metals [2]; while for composites, we will apply a technique developed through an EPSRC iCASE award from 2012-16 on ‘Full-field strain-based methods for NDT & structural integrity measurement’ [3].

I gave a short briefing on DIMES to a group of Airbus engineers last month and it was good see some excitement in the room about the direction of the project.  And, it felt good to be highlighting how we are building on earlier investments in research by joining the dots to create a deployable measurement system and delivering the complete picture in terms of information about the condition of the structure.

Image: Infra red photograph of DIMES meeting in Ulm.

References

  1. Farrar & Worden, An introduction to structural health monitoring, Phil. Trans. R Soc A, 365:303-315, 2007
  2. Middleton, C.A., Gaio, A., Greene, R.J. & Patterson, E.A., Towards automated tracking of initiation and propagation of cracks in aluminium alloy coupons using thermoelastic stress analysis, Nondestructive Evaluation, 38:18, 2019.
  3. Christian, W.J.R., DiazDelaO, F.A. & Patterson, E.A., Strain-based damage assessment of accurate residual strength prediction of impacted composite laminates, Composites Structures, 184:1215-1223, 2018.

The INSTRUCTIVE and DIMES projects have received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreements No. 685777 and No. 820951 respectively.

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

Digital twins and seeking consensus

A couple of weeks ago I wrote about our work on a proof-of-concept for a digital twin of a fission nuclear reactor and its extension to fusion energy [‘Digitally-enabled regulatory environment for fusion power plants‘ on March 20th, 2019].  In parallel with this work and together with a colleague in the Dalton Nuclear Institute, I am supervising a PhD student who is studying the potential role of virtual reality and social network analysis in delivering nuclear infrastructure projects.  In a new PhD project, we are aiming to extend this research to consider the potential provided by an integrated nuclear digital environment [1] in planning the disposal of nuclear waste.  We plan to look at how provision of clear, evidence-based information and in the broader adoption of digital twins to enhance public confidence through better engagement and understanding.  This is timely because the UK’s Radioactive Waste Management (RWM) have launched their new consent-based process for siting a Geological Disposal Facility (GDF). The adoption of a digital environment to facilitate a consent-based process represents a new and unprecedented approach to the GDF or any other nuclear project in the UK. So this will be an challenging and exciting research project requiring an innovative and multi-disciplinary approach involving both engineering and social sciences.

The PhD project is fully-funded for UK and EU citizens as part of a Centre for Doctoral Training and will involve a year of specialist training followed by three years of research.  For more information following this link.

Reference:

[1] Patterson EA, Taylor RJ & Bankhead M, A framework for an integrated nuclear digital environment, Progress in Nuclear Energy, 87:97-103, 2016.

Image: Artist’s impression of geological disposal facility from https://www.gov.uk/government/news/geological-disposal-understanding-our-work