Category Archives: Uncategorized

Spontaneously MOTIVATEd

Some posts arise spontaneously, stimulated by something that I have read or done, while others are part of commitment to communicate on a topic related to my research or teaching, such as the CALE series.  The motivation for a post seems unrelated to its popularity.  This post is part of that commitment to communicate.

After 12 months, our EU-supported research project, MOTIVATE [see ‘Getting Smarter‘ on June 21st, 2017] is one-third complete in terms of time; and, as in all research it appears to have made a slow start with much effort expended on conceptualizing, planning, reviewing prior research and discussions.  However, we are on-schedule and have delivered on one of our four research tasks with the result that we have a new validation metric and a new flowchart for the validation process.  The validation metric was revealed at the Photomechanics 2018 conference in Toulouse earlier this year [see ‘Massive Engineering‘ on April 4th, 2018].  The new flowchart [see the graphic] is the result of a brainstorming [see ‘Brave New World‘ on January 10th, 2018] and much subsequent discussion; and will be presented at a conference in Brussels next month [ICEM 2018] at which we will invite feedback [proceedings paper].  The big change from the classical flowchart [see for example ASME V&V guide] is the inclusion of historical data with the possibility of not requiring experiments to provide data for validation purposes. This is probably a paradigm shift for the engineering community, or at least the V&V [Validation & Verification] community.  So, we are expecting some robust feedback – feel free to comment on this blog!

References:

Hack E, Burguete RL, Dvurecenska K, Lampeas G, Patterson EA, Siebert T & Szigeti E, Steps toward industrial validation experiments, In Proceedings Int. Conf. Experimental Mechanics, Brussels, July 2018 [pdf here].

Dvurcenska K, Patelli E & Patterson EA, What’s the probability that a simulation agrees with your experiment? In Proceedings Photomechanics 2018, Toulouse, March 2018.

 

 

So how do people learn?

Here’s the next in the CALE series.  When designing a learning environment that supports the acquisition of knowledge by all of our students, we need to think about the different ways that people learn.  In the 1970s, Kolb developed his learning style inventory which is illustrated in the diagram above.  Approaches to learning are plotted on two axes: on the horizontal axis is learning by watching at one end and learning by doing at the other; while on the vertical axis is learning by feeling at one end and learning by thinking at the opposite end.  Kolb proposed that people tend to learn by a pair of these attributes, i.e. by watching and feeling, or watching and thinking, or doing and thinking, or doing and feeling, so that an individual can be categorised into one of the four quadrants.  Titles are given to each type of learning as shown in the quadrants, i.e. Divergers, Assimilators, Convergers and Accommodators.

In practice, it seems unlikely that many of us remain in one of these quadrants though we might have a preference for one of them.  Honey and Mumford [1992] proposed that learning is most effective when we rotate around the learning modes represented in the quadrants, as shown in the diagram below.  Starting in the doing & feeling quadrant by have an experience and being an Activist, moving to the feeling & watching quadrant by reviewing the experience as a Reflector, then in watching and thinking mode, drawing conclusions from the experience as a Theorist, culminating with planning the next steps as a Pragmatist in the thinking and doing quadrant before repeating the rotation.

There are other ideas about how we learn but these are two of the classic theories, which I have found useful in creating a learning environment that is dynamic and involves cycling students around Honey and Mumford’s learning modes.

References:

Kolb DA, Learning style inventory technical manual. McBer & Co., Boston, MA, 1976.

Honey P & Mumford A. The Manual of Learning Styles 3rd Ed. Peter Honey Publications Limited, Maidenhead, 1992.

 

CALE #3 [Creating A Learning Environment: a series of posts based on a workshop given periodically by Pat Campbell and Eann Patterson in the USA supported by NSF and the UK supported by HEA]

Formative experiences

A few weeks ago, I wrote about how we all arrive in the classroom with different experiences that are strongly influenced by the conditions in our formative years.  When I talk about this process in workshops on teaching, I invite attendees to tell us about something that has influenced their approach to learning.  However, I kick-off by sharing one of mine: I joined the Royal Navy straight from school and so I arrived at University having painted the white line down the centre of the flight deck of an aircraft carrier but also having flown a jet.  This meant that my experience of dynamics was somewhat different to most of my peers.  It’s amazing the life experiences that are revealed when we go around the room at these workshops.  Feel free to share your experiences and how they influence your learning using the comments section below.

CALE #2 [Creating A Learning Environment: a series of posts based on a workshop given periodically by Pat Campbell and Eann Patterson in the USA supported by NSF and the UK supported by HEA]

Photo by Pedro Aragao [Creative Commons Attribution-Share Alike 3.0 Unported]