Tag Archives: mechanics

Turning the screw in dentistry

Dental implant surgery showing implant being screwed into placeTwo weeks ago, I wrote about supervising PhD students and my own PhD thesis [‘35 years later and still working on a PhD thesis‘ on September 16th, 2020].  The tedium of collecting data as a PhD student without digital instrumentation stimulated me to work subsequently on automation in experimental mechanics which ultimately led to projects like INSTRUCTIVE and DIMES.  In INSTRUCTIVE we developed  low-cost digital sensors for tracking damage in components; while in DIMES we are transitioning the technology into the industrial environment using tests on full-scale aircraft systems as demonstrators.  However, my research in automating and digitising measurements in experimental mechanics has not generated my most cited publications; instead, my two most cited papers describe the development and application of results in my PhD thesis to osseointegrated dental implants.  One, published in 1994, describes the ‘Tightening characteristics for screwed joints in osseointegrated dental implants‘; while, the other published two years earlier provides a ‘Theoretical analysis of the fatigue life of fixture screws in osseointegrated dental implants‘.  In other words, the former tells you how to tighten the screws so that the implants do not come loose and the latter how long the screws will survive before they need to be replaced – both quite useful pieces of information for dentists which perhaps explains their continued popularity.

Statistics footnote: my two most cited papers received five times as many citations in the last 18 months and also since publication than the most popular paper from my PhD thesis. The details of the three papers are given below:

Burguete, R.L., Johns, R.B., King, T. and Patterson, E.A., 1994. Tightening characteristics for screwed joints in osseointegrated dental implants. Journal of Prosthetic Dentistry, 71(6), pp.592-599.

Patterson, E.A. and Johns, R.B., 1992. Theoretical analysis of the fatigue life of fixture screws in osseointegrated dental implants. The International journal of oral & maxillofacial implants, 7(1), p.26.

Kenny, B. and Patterson, E.A., 1985. Load and stress distribution in screw threads. Experimental Mechanics, 25(3), pp.208-213.

Logos of Clean Sky 2 and EUThe INSTRUCTIVE and DIMES projects have received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreements No. 685777 and No. 820951 respectively.

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

Image by володимир волощак from Pixabay.

35 years later and still working on a PhD thesis

It is about 35 years since I graduated with my PhD.  It was not ground-breaking although, together with my supervisor, I did publish about half a dozen technical papers based on it and some of those papers are still being cited, including one this month which surprises me.  I performed experiments and computer modelling on the load and stress distribution in threaded fasteners, or nuts and bolts.  There were no digital cameras and no computer tomography; so, the experiments involved making and sectioning models of nuts and bolts in transparent plastic using three-dimensional photoelasticity [see ‘Art and Experimental Mechanics‘ on July 17th, 2012].  I took hundreds of photographs of the sections and scanned the negatives in a microdensitometer.  The computer modelling was equally slow and laborious because there were no graphical user interfaces (GUI); instead, I had to type strings of numbers into a terminal, wait overnight while the calculations were performed, and then study reams of numbers printed out on long rolls of paper.  The tedium of the experimental work inspired me to work on utilising digital technology to revolutionise the field of experimental mechanics over the following 15 to 20 years.  In the past 15 to 20 years, I have moved back towards computer modelling and focused on transforming the way in which measurement data are used to improve the fidelity of computer models and to establish confidence in their predictions [see ‘Establishing fidelity and credibility in tests and simulations‘ on July 25th, 2018].  Since completing my PhD, I have supervised 32 students to successful completion of their PhDs.  You might think that was a straightforward process of an initial three years for the first one to complete their research and write their thesis, followed by one graduating every year.  But that is not how it worked out, instead I have had fallow years as well as productive years.  At the moment, I am in a productive period, having graduated two PhD students per year since 2017 – that’s a lot of reading and I have spent much of the last two weekends reviewing a thesis which is why PhD theses are the topic of this post!

Footnote: the most cited paper from my thesis is ‘Kenny B, Patterson EA. Load and stress distribution in screw threads. Experimental Mechanics. 1985 Sep 1;25(3):208-13‘ and this month it was cited by ‘Zhang D, Wang G, Huang F, Zhang K. Load-transferring mechanism and calculation theory along engaged threads of high-strength bolts under axial tension. Journal of Constructional Steel Research. 2020 Sep 1;172:106153‘.

Slow start to an exciting new project on thermoacoustic response of AM metals

We held the kick-off meeting for a new research project this week.  It’s a three-way collaboration involving three professors based in Portugal, the UK and USA [Chris Sutcliffe, John Lambros at UIUC and me]; so, our kick-off meeting should have involved at least two of us travelling to the laboratory of the third collaborator and spending some time brainstorming about the challenges that we have agreed to tackle over the next three years.  Instead we had a call via Skype and a rather procedural meeting in which we covered all of the issues without really engendering any excitement or sparking any new ideas.  It would appear that we need the stimulus of new environments to maximise our creativity and that we use body language as well as facial expressions to help us reach a friendly consensus on which  crazy ideas are worth pursuing and which should be quietly forgotten.

Our new research project has a long title: ‘Thermoacoustic response of Additively Manufactured metals: A multi-scale study from grain to component scales‘.  In simple terms, we are going to look at whether residual stresses could be designed to be beneficial to the performance of structural parts used in demanding environments such as those found in reusable spacecraft, hypersonic flight vehicles and breeder blankets in fusion reactors.  Residual stresses are often induced during the manufacture of parts and are usually detrimental to the performance of the part.  Our hypothesis is that in additive manufacturing, or 3D printing, we have sufficient control of the manufacture of the part that we can introduce ‘designer stresses’ which will improve the part’s performance in demanding environments.  The research is funded jointly by the National Science Foundation (NSF) in the USA and the Engineering and Physical Sciences Research Council (EPSRC) in the UK and is supported by The MTC and Renishaw plc; you can find out more at Grants on the Web. The research will be building on our recent research on ‘Potential dynamic buckling in hypersonic vehicle skin‘ [posted July 1st, 2020] and earlier work, see ‘Hot stuff‘ on September 13th, 2012.  While the demanding environment is not new to us, we will be using 3D printed parts for the first time instead of components made by conventional (subtractive) machining and taking them to higher temperatures.

The thumbnail shows measured modal shapes for a subtractively-manufactured plate subject to the three temperature regimes: room temperature (left), transverse heating of the centre of the plate (middle) and longitudinal heating on one edge (right) from Silva, A.S., Sebastian, C.M., Lambros, J. and Patterson, E.A., 2019. High temperature modal analysis of a non-uniformly heated rectangular plate: Experiments and simulations. J. Sound & Vibration, 443, pp.397-410.

 

Graphite for Very High Temperature Reactors (VHTR)

One of the implications of the second law of thermodynamics is that the thermal efficiency of power stations increases with their operating temperature.  Thus, there is a drive to increase the operating temperature in the next generation of nuclear power stations, known as Generation IV reactors.  In one type of Generation IV reactors, known as the Very High Temperature Reactor (VHTR), graphite is designed to be both the moderator for neutrons and a structural element of the reactor.  Although the probability of damage in an accident is extremely low, it is important to consider the consequences of damage causing the core of the reactor to be exposed to air.  In these circumstances, with the core temperature at about 1600°C, the graphite would be exposed to severe oxidation by the air that could change its material properties and ability to function as a moderator and structural element.  Therefore, in recent research, my research group has been working with colleagues at the UK National Nuclear Laboratory (NNL) and at the National Tsing Hua University (NTHU) in Taiwan to conduct experiments on nuclear graphite over a range of temperatures.  Our recently published article shows that all grades of nuclear graphite show increased rates of oxidation for temperatures above 1200°C.  We found that large filler particles using a pitch-based graphite rather than a petroleum-based graphite gave higher oxidation resistance at these elevated temperatures.  This data is likely to be important in the design and operations of the next generation of nuclear power stations.

The work described above was supported by the NTHU-University of Liverpool Dual PhD Programme [see ‘Citizens of the world‘ on November 27th, 2019] and NNL.  This is the fifth, and for the moment last, in a series of posts on recent work published by my research group.  The others are: ‘Salt increases nanoparticle diffusion‘ on April 22nd, 2020; ‘Spatio-temporal damage maps for composite materials‘ on May 6th, 2020; ‘Thinking out of the box leads to digital image correlation through space‘ on June 24th, 2020; and, ‘Potential dynamic buckling in hypersonic vehicle skin‘ on July 1st, 2020.

The image is figure 5: SEM micrographs of the surface of petroleum-based IG-110 graphite samples oxidized at various temperatures from Lo IH, Tzelepi A, Patterson EA, Yeh TK. A study of the relationship between microstructure and oxidation effects in nuclear graphite at very high temperatures.  J. Nuclear Materials. 501:361-70, 2018.

Source:

Lo I-H, Yeh T-K, Patterson EA & Tzelepi A, Comparison of oxidation behaviour of nuclear graphite grades at very high temperatures, J. Nuclear Materials, 532:152054, 2020.