Tag Archives: composite materials

More on fairy lights and volume decomposition (with ice cream included)

Explanation in textLast June, I wrote about representing five-dimensional data using a three-dimensional stack of transparent cubes containing fairy lights whose brightness varied with time and also using feature vectors in which the data are compressed into a relatively short string of numbers [see ‘Fairy lights and decomposing multi-dimensional datasets’ on June 14th, 2023].  After many iterations, we have finally had an article published describing our method of orthogonally decomposing multi-dimensional data arrays using Chebyshev polynomials.  In this context, orthogonal means that components of the resultant feature vector are statistically independent of one another.  The decomposition process consists of fitting a particular form of polynomials, or equations, to the data by varying the coefficients in the polynomials.  The values of the coefficients become the components of the feature vector.  This is what we do when we fit a straight line of the form y=mx+c to set of values of x and y and the coefficients are m and c which can be used to compare data from different sources, instead of the datasets themselves.  For example, x and y might be the daily sales of ice cream and the daily average temperature with different datasets relating to different locations.  Of course, it is much harder for data that is non-linear and varying with w, x, y and z, such as the intensity of light in the stack of transparent cubes with fairy lights inside.  In our article, we did not use fairy lights or icecream sales, instead we compared the measurements and predictions in two case studies: the internal stresses in a simple composite specimen and the time-varying surface displacements of a vibrating panel.

The image shows the normalised out-of-plane displacements as the colour as a function of time in the z-direction for the surface of a panel represented by the xy-plane.

Source:

Amjad KH, Christian WJ, Dvurecenska KS, Mollenhauer D, Przybyla CP, Patterson EA. Quantitative Comparisons of Volumetric Datasets from Experiments and Computational Models. IEEE Access. 11: 123401-123417, 2023.

Horsepower driving ambition

A photograph of 'Physical Energy' in Kensington Gardens - a sculpture of a man on a horseWalking across Kensington Gardens in London last week, on my way to attend a conference on Carbon, I came across the sculpture in the picture.  It is ‘Physical Energy’ by George Frederick Watts (1817 – 1904), which really confused me because I automatically started thinking about the sort of energy that is associated with horsepower.  Horsepower is a unit of power (energy per unit time) developed by James Watt (1736 – 1819) to evaluate the output of his steam engines.  The plaque below the sculpture calls it a ‘sculptural masterpiece; a universal embodiment of the dynamic force of ambition’ and states that the artist described it as a ‘symbol of that restless physical impulse to seek the still unachieved in the domain of physical things.’  So, while the connections seemed obvious to me, it would appear that Watts was not inspired by Watt.

The conference was interesting too.  There were delegates from all over the world presenting research on a wide range of topics from new designs of batteries to using carbon as an sorbent for toxins, carbon-based composites and self-assembly of metal-organic meso-crystals.  Two students that I have supervised were presenting their research on establishing credibility for models of the graphite core in nuclear power plants and on algorithms for identifying the surface morphology in samples of graphite.

Our last DIMES

Photograph of wing test in AWICThirty-three months ago (see ‘Finding DIMES‘ on February 6th, 2019) we set off at a gallop ‘to develop and demonstrate an automated measurement system that integrates a range of measurement approaches to enable damage and cracks to be detected and monitored as they originate at multi-material interfaces in an aircraft assembly’. The quotation is taken directly from the aim of the DIMES project which was originally planned and funded as a two-year research programme. Our research, in particular the demonstration element, has been slowed down by the pandemic and we resorted to two no-cost extensions, initially for three months and then for six months to achieve the project aim.   Two weeks ago, we held our final review meeting, and this week we will present our latest results in the third of a series of annual workshops hosted by Airbus, the project’s topic manager.   The DIMES system combines visual and infrared cameras with resistance strain gauges and fibre Bragg gratings to detect 1 mm cracks in metals and damage indications in composites that are only 6 mm in diameter.  We had a concept design by April 2019 (see ‘Joining the dots‘ on July 10th, 2019) and a detailed design by August 2019.  Airbus supplied us with a section of A320 wing, and we built a test-bench at Empa in Zurich in which we installed our prototype measurement system in the last quarter of 2019 (see ‘When seeing nothing is a success‘ on December 11th, 2019).  Then, the pandemic intervened and we did not finish testing until May 2021 by which time, we had also evaluated it for monitoring damage in composite A350 fuselage panels (see ‘Noisy progressive failure of a composite panel‘ on June 30th, 2021).  In parallel, we have installed our ‘DIMES system’ in ground tests on an aircraft wing at Airbus in Filton (see image) and, using a remote installation, in a cockpit at Airbus in Toulouse (see ‘Most valued player performs remote installation‘ on December 2nd, 2020), as well as an aircraft at NRC Aerospace in Ottawa (see ‘An upside to lockdown‘ on April 14th 2021).   Our innovative technology allows condition-led monitoring based on automated damage detection and enables ground tests on aircraft structures to be run 24/7 saving about 3 months on each year-long test.

The University of Liverpool is the coordinator of the DIMES project and the other partners are Empa, Dantec Dynamics GmbH and Strain Solutions Ltd.

The DIMES project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 820951.

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.

Noisy progressive failure of a composite panel

Photograph showing close-up of progressive failure in a composite materialComposite materials have revolutionized many fields of engineering by providing lightweight strong components whose internal structure can be tailored to optimise their load-bearing capabilities. Engineering composites consist of high-strength fibres embedded in a lightweight matrix that keeps the fibres in position and provides the shape of the component.  While many composite materials have an impressive structural performance, some also exhibit spectacular failure modes with noises like guitar strings snapping when fibres start to fail and with jagged eruptions of material appearing on the surface, as shown in the image.  A year ago, I reported on our work in the DIMES project, to test the capabilities of our integrated measurement system to detect and track damage in real-time in a metallic section from an aircraft wing [see ‘Condition monitoring using infrared imaging‘ on June 17th, 2020].  Last month, we completed a further round of tests at Empa to demonstrate the system’s capabilities on composite structures which have been tested almost to destruction.  One of the advantages of composite structures is their capability to function and bear load despite quite high levels of damage, which meant we were able to record the progressive rupture of one of our test panels during cyclic fatigue loading.  Watch and listen to this short video to see and hear the material being torn apart – ignore the loud creaking and groaning from the test rig, it’s the quieter sound like dead leaves being swept up.

The University of Liverpool is the coordinator of the DIMES project and the other partners are Empa, Dantec Dynamics GmbH and Strain Solutions LtdAirbus is the topic manager on behalf of the Clean Sky 2 Joint Undertaking.

The DIMES project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 820951.

 

The opinions expressed in this blog post reflect only the author’s view and the Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains.