Tag Archives: fossil fuel

When an upgrade is downgrading

I had slightly surreal time last week.  I visited the USA to attend a review of a research programme sponsored by the US Government and reported on two of our research projects.  When I arrived in the USA on Monday evening, I went to collect my rental car and was told that I had been upgraded to a pick-up truck because the rental company did not have left any of the compact cars that had been booked for me.  I gingerly manoeuvred the massive vehicle, a Toyota Tacoma, out of the parking garage and on to the freeway.  I should admit to having owned a large SUV when we lived in the USA and so driving along the freeway was not a totally new experience, except that the white bonnet in front of me seemed huge.

The following morning, I drove to the location of the review and strategically selected a parking space with empty spaces all around it so that I could drive through into the space and avoid needing to reverse the behemoth.  As I was walking across the parking lot, someone accosted me and said: ‘Nice truck, how do you like it?’  Embarrassed at driving such an environmental-unfriendly vehicle, I responded that it was a rental car that I just picked up.  To which he replied that the best protection against my Tacoma, was his Tacoma. And, that it was his dream car.  Then, I noticed that he had parked his black one alongside mine.

Our children learnt to drive in our ancient Ford Explorer and loved it.  We all knew that it was wrong to drive something that consumed fuel so voraciously even if it did get us effortlessly through the most horrendous winter storms.  However, we have left all that behind and now either use public transport or drive cars that achieve 60 mpg or more on good days. But here I was being admitted to a club that worshipped their pick-up trucks.

We walked together into the review which was held in a small lecture theatre equipped with comfortable armchairs, which was just as well because we sat there from 8.30 to 4.30 for two days listening to half-hour presentations with only short breaks.  We were presented with some stunning research based on brilliant innovative thinking, such as materials that can undergo 90% deformation and fully recover their shape and how the rippling motion of covert feathers on a bird’s wings could help us design more efficient aeroplanes.  More on that in later posts.  Of course, there were some less good presentations that had many us reaching for our mobile phones to catch up on the endless flow of email [see: ‘Compelling Presentations‘ on March 21st, 2018).  At the end of each day, we dispersed to different hotels scattered across town in our rental cars.  On Thursday, I drove back to the airport and topped up the fuel tank before returning my truck.  I worked out that it had achieved only 19 mpg (US) or 23 mpg (UK), despite my gentle driving – that’s almost three times the consumption of my own car!  On the plane home I started reading ‘Overstory‘ by Richard Powers, a novel about our relationship to trees and the damage we are doing to the environment on which trees, and us, are dependent.

Planetary Emergency

Global energy budget from Trenberth et al 2009

This week’s lecture in my thermodynamics course for first-year undergraduate students was about thermodynamic systems and the energy flows in and out of them. I concluded the lecture by talking about our planet as a thermodynamic system using the classic schematic in the thumbnail [see ‘Ample sufficiency of solar energy‘ on October 25th, 2017 for more discussion on this schematic].  This is usually a popular lecture but this year it had particular resonance because of the widely publicised strikes by students for action on climate change.  I have called before for individuals to take responsibility given the intransigence of governments [see ‘Are we all free riders‘ on June 6th, 2016 or ‘New Year Resolution‘ on December 31st, 2014]; so, it is good to see young people making their views and feelings known.

Weather-related events, such as widespread flooding and fires, are reported so frequently in the media that perhaps we have started to ignore them as portents of climate change.  For me, three headlines events have reinforced the gravity of the situation:

  1. The publication earlier this month of a joint report by UNICEF and the Royal College of Paediatrics and Child Health that air pollution in the UK so high that it is infringing the fundamental rights of children to grow up in a clean and safe environment; and, under the Government’s current plans, air pollution in the UK is expected to remain at dangerous levels for at least another 10 years.
  2. The warning earlier this month from the Meteorological Office in London that global warming could exceed 1.5C above pre-industrial levels within five years.  In my lecture, I highlighted that a 2C rise would be equal to the temperature 3 million years ago when sea levels were 25 to 35m high; and, a 1m rise in sea level would displace 145 million people globally [according to Blockstein & Weigmann, 2010].
  3. The suspension of construction of the new nuclear power station on Anglesey by Hitachi, which leaves the UK Government’s energy strategy in disarray with only one of the six planned new power stations under construction.  This leaves the UK unable to switch from fossil-fuelled to electric vehicles and dependent on fossil fuel to meet current electricity demand.

I apologise for my UK focus this week but whereever you are reading this blog you could probably find similar headlines in your region.  For instance, the 2016 UNICEF report states that one in seven children worldwide live in toxic air and air pollution is a major contributing factor in the deaths of around 600,000 children under five every year.  These three headlines illustrate that there is a planetary emergency because climate change is rapidly and radically altering the ecosystem with likely dire consequences for all living things; that despite a near-existential threat to the next generation as a consequence of air pollution most governments are effectively doing nothing; and that in the UK we are locked into a fossil-fuel dependency for the foreseeable future due to a lack of competent planning and commitment from the government which will compound the air pollution and climate change problems.

Our politicians need to stop arguing about borders and starting worrying about the whole planet.  We are all in this together and no man-made border will protect us from the impact of making the planet a hostile environment for life.

Nuclear winter school

I spent the first full-week of January 2019 at a Winter School for a pair of Centres for Doctoral Training focussed on Nuclear Energy (see NGN CDT & ICO CDT).  Together the two centres involve eight UK universities and most of the key players in the UK industry.  So, the Winter School offers an opportunity for researchers in nuclear science and engineering, from academia and industry, to gather together for a week and share their knowledge and experience with more than 80 PhD students.  Each student gives a report on the progress of their research to the whole gathering as either a short oral presentation or a poster.  It’s an exhausting but stimulating week for everyone due to both the packed programmme and the range of subjects covered from fundamental science through to large-scale engineering and socio-economic issues.

Here are a few things that caught my eye:

First, the images in the thumbnail above which Paul Cosgrove from the University of Cambridge used to introduce his talk on modelling thermal and neutron fluxes.  They could be from an art gallery but actually they are from the VTT Technical Research Centre of Finland and show the geometry of an advanced test reactor [ATR] (top); the rate of collisions in the ATR (middle); and the neutron density distribution (bottom).

Second, a great app for your phone called electricityMap that shows you a live map of global carbon emissions and when you click on a country it reveals the sources of electricity by type, i.e. nuclear, gas, wind etc, as well as imports and exports of electricity.  Dame Sue Ion told us about it during her key-note lecture.  I think all politicians and journalists need it installed on their phones to check their facts before they start talking about energy policy.

Third, the scale of the concrete infrastructure required in current designs of nuclear power stations compared to the reactor vessel where the energy is generated.  The pictures show the construction site for the Vogtle nuclear power station in Georgia, USA (left) and the reactor pressure vessel being lowered into position (right).  The scale of nuclear power stations was one of the reasons highlighted by Steve Smith from Algometrics for why investors are not showing much interest in them (see ‘Small is beautiful and affordable in nuclear power-stations‘ on January 14th, 2015).  Amongst the other reasons are: too expensive (about £25 billion), too long to build (often decades), too back-end loaded (i.e. no revenue until complete), too complicated (legally, economically & socially), too uncertain politically, too toxic due to poor track record of returns to investors, too opaque in terms of management of industry.  That’s quite a few challenges for the next generation of nuclear scientists and engineers to tackle.  We are making a start by creating design tools that will enable mass-production of nuclear power stations (see ‘Enabling or disruptive technology for nuclear engineering?‘ on January 28th, 2015) following the processes used to produce other massive engineering structures, such as the Airbus A380 (see Integrated Digital Nuclear Design Programme); but the nuclear industry has to move fast to catch up with other sectors of the energy business, such as gas-fired powerstations or wind turbines.  If it were to succeed then the energy market would be massively transformed.

 

Subtle balance of sustainable orderliness

129-2910_IMGI wrote this short essay a couple of weeks for another purpose and then changed my mind about using it.  So I thought I would share it on this blog.

Whenever we do something, some of our useful resource gets converted into productive activity but some is always lost in useless waste.  In other words, 100% efficiency is impossible – we can’t convert all of our resource into productive activity.  Engineers call this the second law of thermodynamics.  Thermodynamics is about energy transitions, for instance converting chemical energy in fossil fuels into electrical energy in a power station, and in these circumstances, the useless waste is called entropy.  At the time of the industrial revolution, Rudolf Clausius recognised that entropy can be related to the heat losses which occur whenever we do something useful, such as generating electricity in a power station, cleaning the house with an electric vacuum cleaner or running to catch the bus.

Clausius’s definition of entropy was really useful for designers of 19th century steam engines but it is difficult to use in other walks of life.  Fortunately Ludwig Boltzmann gave us a more valuable description.  He equated entropy to the number of states in which something could be arranged, or its lack of orderliness.  In other words, the more ways you can arrange something, the less ordered it is likely to be and the higher its entropy.  So a box of children’s building blocks has a low entropy when the blocks are packed in their box because there is a relatively small number of ways of arranging them to fit in the box.  When the box is emptied onto your living room floor, there are very many more possible arrangements and so the blocks have a high entropy.  The chance of knowing the whereabouts of a particular block is small. Whoops!  Now we’ve wondered into information theory.

Let’s get back to the second law, which using Boltzmann’s description of entropy, we can express as the level of orderliness should always decrease.  Stephen Hawking describes this as the arrow of time.  Because, if someone shows you a video clip in which steam gathers itself together and returns into a cup of coffee, or that box of children’s blocks repacks itself, then we know the video is being run backwards because these processes involve decreasing entropy and this can only happen spontaneously if we reverse the direction of time.  If this is true then why do we exist as highly ordered structures?

Erwin Schrödinger in his book, ‘What is Life’ says that organisms suck orderliness out of the environment in order to exist, so that the orderliness of the universe, that’s the organism and its environment, decreases.  Humans digest highly-ordered food to sustain life and food, in the form of plants, is brought into existence by metabolising energy from the sun and releasing entropy in the form of heat.  When we die these processes cease and the orderliness is sucked out of us to sustain insects, maggots and bacteria.

We are organisms, known as Sapiens, that organise ourselves into cultures and societies.  Organisation implies an increase in the level of orderliness in apparent contradiction of the second law.  So, we would expect to find a corresponding increase in disorder somewhere to counterbalance the order in society.  The more regimented society becomes the greater the requirement for counterbalancing disorder to occur somewhere in order to satisfy the second law, which might happen unexpectedly and explosively if the level of constraint or regulation is too great.  This is not an argument for anarchy or total deregulation, the financial sector has already demonstrated the risks associated with this path, but for an optimum and sustainable level of orderliness.  This requires subtle judgment just like in elegant engineering design and living a healthy life, both physically and psychologically.