Tag Archives: digital twin

Commoditisation of civil nuclear power

Logo for BBC Inside ScienceA colleague and I published a paper last month that we hope will bring about a paradigm shift in the nuclear power industry. I was interviewed on BBC Radio 4’s Inside Science on the day following its publication – its the first time one of my scientific papers has made that big a splash in the media!  You can listen to the programme on BBC Sounds at https://www.bbc.co.uk/sounds/play/m001zdwv.

In the paper we describe a blueprint for the factory-production of sealed micro-power units with a digitally-enabled, holistic assurance framework.  Currently, several designs of micro-reactors are progressing to the prototype stage with hazards contained on-site.  The integration of these approaches enables a transformation of the regulatory regime to type or series approval at the factory, similar to the aerospace industry, and supported by digital tools such as block chains to provide transparent quality assurance within the supply chain.  The transformation of the regulatory regime and the shift to ‘flow’ production in a factory would remove the financial risk from the power plant to the factory thereby enabling nuclear power to become a realistic competitor for intermittent green energy sources, such as wind and solar, both in terms of financial and ecological costs.  The output from three production lines could replace the current electricity generating capacity from fossil fuels in the UK over approximately 15 years thus making a significant contribution to achieving net zero greenhouse gas emissions.  We propose a design philosophy for the micro-power units that will allow them to go unnoticed in an urban environment or even become an iconic product that signals a community’s commitment to responsible stewardship of the Earth’s resources.  Our blueprint represents a revolutionary change for the nuclear power industry that would likely lead to the commoditisation of nuclear power whereas the status quo probably leads to extinction.

The paper is published with open access (its free) at Patterson EA & Taylor RJ, 2024, The commoditisation of civil nuclear power, Royal Society Open Science, 11:240021.

Extra on digital twins

After five months of posting monthly, I cannot resist the temptation to slip in an extra one.  Mainly because I want to let you know about the Pint of Science Festival taking place next week.  In Liverpool we have organised a series of three evenings at the Philharmonic pub on Hope Street featuring talks by engineers from the School of Engineering and the Institute for Digital Engineering and Autonomous Systems (IDEAS) at the University of Liverpool.  I am planning to talk about digital twins – what they are, how we can use them, what they might become and whether we are already part of a digital world.  If you enjoyed reading my posts on ‘Digital twins that thrive in the real world’, ‘Dressing up your digital twin’, and ‘Are we in a simulation?’ then come and discuss digital twins with me in person.  My talk is part of a programme on Digital with Everything on May 15th.  On May 13th and 14th we have programmes on Engineering in Nature and Science of Vision, Colliders and Crashes, respectively.  I hope you can come and join us in the real-world.

Opportunities lost in knowledge management using digital technology

Decorative imageRegular readers of this blog will know that I occasionally feature publications from my research group.  The most recent was ‘Predicting release rates of hydrogen from stainless steel’ on September 13th, 2023 and before that ‘Label-free real-tracking of individual bacterium’ on January 25th 2023 and ‘A thermal emissions-based real-time monitoring system for in situ detection of cracks’ in ‘Seeing small changes is a big achievement’ on October 26th 2023.  The subject of these publications might seem a long way apart but they are linked by my interest in trying to measure events in the real-world and use the data to develop and validate high-fidelity digital models.  Recently, I have stretched my research interests still further through supervising a clutch of PhD students with a relatively new collaborator working in the social sciences.  Two of the students have had their first papers published by the ASME (American Society of Mechanical Engineers) and the IEEE (Institute of Electrical and Electronics Engineers).  Their papers are not directly connected but they both explore the use of published information to gain new insights on a topic.  In the first one [1], we have explored the similarities and differences between safety cases for three nuclear reactors: a pair of research reactors – one fission and one fusion reactor; and a commercial fission reactor.  We have developed a graphical representation of the safety features in the reactors and their relationships to the fundamental safety principles set out by the nuclear regulators. This has allowed us to gain a better understanding of the hazard profiles of fission and fusion reactors that could be used to create the safety case for a commercial fusion reactor.  Fundamentally, this paper is about exploiting existing knowledge and looking at it in a new way to gain fresh insights, which we did manually rather than automating the process using digital technology.  In the second paper [2], we have explored the extent to which digital technologies are being used to create, collate and curate knowledge during and beyond the life-cycle of an engineering product.  We found that these processes were happening but generally not in a holistic manner.  Consequently, opportunities were being lost through not deploying digital technology in knowledge management to undertake multiple roles simultaneously, e.g., acting as repositories, transactive memory systems (group-level knowledge sharing), communication spaces, boundary objects (contact points between multiple disciplines, systems or worlds) and non-human actors.  There are significant challenges, as well as competitive advantages and organisational value to be gained, in deploying digital technology in holistic approaches to knowledge management.  However, despite the rapid advances in machine learning and artificial intelligence [see ‘Update on position of AI on hype curve: it cannot dream’ on July 26th 2023] that will certainly accelerate and enhance knowledge management in a digital environment, a human is still required to realise the value of the knowledge and use it creatively.

References

  1. Nguyen, T., Patterson, E.A., Taylor, R.J., Tseng, Y.S. and Waldon, C., 2023. Comparative maps of safety features for fission and fusion reactors. Journal of Nuclear Engineering and Radiation Science, pp.1-24
  2. Yao, Y., Patterson, E.A. and Taylor, R.J., 2023. The Influence of Digital Technologies on Knowledge Management in Engineering: A Systematic Literature Review. IEEE Transactions on Knowledge and Data Engineering.

Slicing the cake equally or engineering justice

Decorative photograph of sliced chocolate cakeIn support of the research being performed by one of the PhD students that I am supervising, I have been reading about ‘energy justice’.  Energy justice involves the equitable sharing of the benefits and burdens of the production and consumption of energy, including the fair treatment of individuals and communities when making decisions about energy.  At the moment our research is focussed on the sharing of the burdens associated with energy production and ways in which digital technology might improve decision-making processes.  Justice incorporates the distribution of rights, liberties, power, opportunities, and money – sometimes known as ‘primary goods’.  The theory of justice proposed by the American philosopher, John Rawls in the 1970’s is a recurring theme: that these primary goods should be distributed in a manner a hypothetical person would choose, if, at the time, they were ignorant of their own status in society.  In my family, this is the principle we use to divide cakes and other goodies equally between us, i.e., the person slicing the cake is the last person to take a slice.  While many in society overlook the inequalities and injustices that sustain their privileged positions, I believe that engineers have a professional responsibility to work towards the equitable distribution of the benefits and burdens of engineering on the individuals and communities, i.e., ‘engineering justice’ [see ‘Where science meets society‘ on September 2nd, 2015].  This likely involves creating a more diverse engineering profession which is better equipped to generate engineering solutions that address the needs of the whole of our global society [see ‘Re-engineering engineering‘ on August 30th, 2017].  However, it also requires us to rethink our decision-making processes to achieve  ‘engineering justice’.  There is a clear and close link to ‘procedure justice’ and ‘fair process’ [see ‘Advice to abbots and other leaders‘ November 13th, 2019] which involves listening to people, making a decision, then explaining the decision to everyone concerned.  In our research, we are interested in how digital environments, including digital twins and industrial metaverses, might enable wider and more informed involvement in decision-making about major engineering infrastructure projects, with energy as our starting point.

Sources:

Derbyshire J, Justice, fairness and why Rawls still matters today, FT Weekend, April 20th, 2023.

MacGregor N, How to transcend the culture wars, FT Weekend, April 29/30th, 2023.

Rawls J, A Theory of Justice, Cambridge MA: Belknap Press, 1971

Sovacool BK & Dworkin MH, Global Energy Justice: Problems, Principles and Practices, Cambridge: Cambridge University Press, 2014.

Image: https://www.alsothecrumbsplease.com/air-fryer-chocolate-cake/