Tag Archives: electrons

Scattering electrons reveal dislocations in material structure

Figure 9 from Yang et al, 2012. Map of plastic strain around the crack tip (0, 0) based on the full width of half the maximum of the discrete Fourier transforms of BSE images, together with thermoelastic stress analysis data (white line) and estimates of the plastic zone size based on approaches of Dugdale's (green line) and Irwin's (blue line; dimensions in millimetres).

Figure 9 from Yang et al, 2012. Map of plastic strain around the crack tip (0, 0) based on the full width of half the maximum of the discrete Fourier transforms of BSE images, together with thermoelastic stress analysis data (white line) and estimates of the plastic zone size based on approaches of Dugdale’s (green line) and Irwin’s (blue line; dimensions in millimetres).

It is almost impossible to manufacture metal components that are flawless.  Every flaw or imperfection in a metallic component is a potential site for the initiation of a crack that could lead to the failure of the component [see ‘Alan Arnold Griffith’ on April 26th, 2017].  Hence, engineers are very interested in understanding the mechanisms of crack initiation and propagation so that these processes can be prevented or, at least, inhibited.  It is relatively easy to achieve these outcomes by not applying loads that would supply the energy to drive failure processes; however, the very purpose of a metal component is often to carry load and hence a compromise must be reached.  The deep understanding of crack initiation and propagation, required for an effective and safe compromise, needs detailed measurements of evolution of the crack and of its advancing front or tip [depending whether you are thinking in three- or two-dimensions].  When a metal is subjected to repeated cycles of loading, then a crack can grow incrementally with each load cycle; and in these conditions a small volume of material, just ahead of the crack and into which the crack is about to grow, has an important role in determining the rate of crack growth.  The sharp geometry of the crack tip causes localisation of the applied load in the material ahead of the crack thus raising the stress sufficiently high to cause permanent deformation in the material on the macroscale.  The region of permanent deformation is known as the crack tip plastic zone.  The permanent deformation induces disruptions in the regular packing of the metal atoms or crystal lattice, which are known as dislocations and continued cyclic loading causes the dislocations to move and congregate around the crack tip.  Ultimately, dislocations combine to form voids in the material and then voids coalesce to form the next extension of the crack.  In reality, it is an oversimplification to refer to a crack tip because there is a continuous transition from a definite crack to definitely no crack via a network of loosely connected voids, unconnected voids, aggregated dislocations almost forming a void, to a progressively more dispersed crowd of dislocations and finally virgin or undamaged material.  If you know where to look on a polished metal surface then you could probably see a crack about 1 mm in length and, with aid of an optical microscope, you could probably see the larger voids forming in the material ahead of the crack especially when a load is applied to open the crack.  However, dislocations are very small, of the order tens of nanometres in steel, and hence not visible in an optical microscope because they are smaller than the wavelength of light.  When dislocations congregate in the plastic zone ahead of the crack, they disturb the surface of the metal and causing a change its texture which can be detected in the pattern produced by electrons bouncing off the surface.  At Michigan State University about ten years ago, using backscattered electron (BSE) images produced in a scanning electron microscope (SEM), we demonstrated that the change in texture could be measured and quantified by evaluating the frequency content of the images using a discrete Fourier transform (DFT).  We collected 225 square images arranged in a chessboard pattern covering a 2.8 mm by 2.8 mm square around a 5 mm long crack in a titanium specimen which allowed us to map the plastic zone associated with the crack tip (figure 9 from Yang et al, 2012).  The length of the side of each image was 115 microns and 345 pixels so that we had 3 pixels per micron which was sufficient to resolve the texture changes in the metal surface due to dislocation density.  The images are from our paper published in the Proceedings of the Royal Society and the one below (figure 4 from Yang et al, 2012) shows four BSE images along the top at increasing distances from the crack tip moving from left to right.  The middle row shows the corresponding results from the discrete Fourier transform that illustrate the decreasing frequency content of the images moving from left to right, i.e. with distance from the crack.  The graphs in the bottom row show the profile through the centre of the DFTs.  The grain structure in the metal can be seen in the BSE images and looks like crazy paving on a garden path or patio.  Each grain has a particular and continuous crystal lattice orientation which causes the electrons to scatter differently from it compared to its neighbour.  We have used the technique to verify measurements of the extent of the crack tip plastic zone made using thermoelastic stress analysis (TSA) and then used TSA to study ‘Crack tip plasticity in reactor steels’ [see post on March 13th, 2019].

Figure 4 from Yang et al, 2012. (a) Backscattered electron images at increasing distance from crack from left to right; (b) their corresponding discrete Fourier transforms (DFTs) and (c) a horizontal line profile across the centre of each DFT.

Figure 4 from Yang et al, 2012. (a) Backscattered electron images at increasing distance from crack from left to right; (b) their corresponding discrete Fourier transforms (DFTs) and (c) a horizontal line profile across the centre of each DFT.

Reference: Yang, Y., Crimp, M., Tomlinson, R.A., Patterson, E.A., 2012, Quantitative measurement of plastic strain field at a fatigue crack tip, Proc. R. Soc. A., 468(2144):2399-2415.

Do you believe in an afterlife?

‘I believe that energy can’t be destroyed, it can only be changed from one form to another.  There’s more to life than we can conceive of.’ The quote is from the singer and songwriter, Corinne Bailey Rae’s answer to the question: do you believe in an afterlife? [see Inventory in the FT Magazine, October 26/27 2019].  However, the first part of her answer is the first law of thermodynamics while the second part resonates with Erwin Schrödinger’s view on life and consciousness [see ‘Digital hive mind‘ on November 30th, 2016]. The garden writer and broadcaster, Monty Don gave a similar answer to the same question: ‘Absolutely.  I believe that the energy lives on and is connected to place.  I do have this idea of re-joining all of my past dogs and family on a summer’s day, like a Stanley Spencer painting.’ [see Inventory in the FT Magazine, January 18/19 2020].  The boundary between energy and mass is blurry because matter is constructed from atoms and atoms from sub-atomic particles, such as electrons that can behave as particles or waves of energy [see ‘More uncertainty about matter and energy‘ on August 3rd 2016].  Hence, the concept that after death our body reverts to a cloud of energy as the complex molecules of our anatomy are broken down into elemental particles is completely consistent with modern physics.  However, I suspect Rae and Don were going further and suggesting that our consciousness lives on in some form. Perhaps through some kind of unified mind that Schrödinger thought might exist as a consequence of our individual minds networking together to create emergent behaviour.  Schrödinger found it utterly impossible to form an idea about how this might happen and it seems unlikely that an individual mind could ever do so; however, perhaps the more percipient amongst us occasionally gets a hint of the existence of something beyond our individual consciousness.

Reference: Erwin Schrodinger, What is life? with Mind and Matter and Autobiographical Sketches, Cambridge University Press, 1992.

Image: ‘Sunflower and dog worship’ by Stanley Spencer, 1937 @ https://www.bbc.co.uk/news/entertainment-arts-13789029

Electron uncertainty

daisyMost of us are uncomfortable with uncertainty.  Michael Faraday’s ability to ‘accept the given – certainties and uncertainties’ [see my post entitled ‘Steadiness and placidity’ on July 18th, 2016] was exceptional and perhaps is one reason he was able to make such outstanding contributions to science and engineering.  It has been said that his ‘Expts. on the production of Electricity from Magnetism, etc. etc.’ [Note 148 from Faraday’s notebooks] on August 29th 1831  began the age of electricity.  Electricity is associated with the flow of electric charge, which is often equated with the flow of electrons and electrons are subatomic particles with a negative elementary charge and a mass that is approximately 1/1836 atomic mass units.  A moving electron, and it is difficult to find a stationary one, has wave-particle duality – that is, it simultaneously has the characteristics of a particle and a wave.  So, there is uncertainty about the nature of an electron and most of us find this concept difficult to handle.

An electron is both matter and energy.  It is a particle in its materialisation as matter but a wave in its incarnation as energy.  However, this is probably too much of a reductionist description of a systemic phenomenon.  Nevertheless let’s stay with it for a moment, because it might help elucidate why the method of measurement employed in experiments with electrons influences whether our measurements reflect the behaviour of a particle or a wave.  Perhaps when we design our experiments from an energy perspective then electrons oblige by behaving as waves of energy and when we design from a matter perspective then electrons materialise as particles.

All of this leads to a pair of questions about what is matter and what is energy?  But, these are enormous questions, and even the Nobel Laureate Richard Feynman said ‘in physics today, we have no knowledge of what energy is’, so I’m going to leave them unanswered.  I’ve probably already riled enough physicists with my simplistic discussion.

Note: an atomic mass unit is also known as a Dalton and is equivalent to 1.66×10-27kg

Source:

Hamilton, J., A life of discovery: Michael Faraday, giant of the scientific revolution. New York: Random House, 2002.

Pielou EC, The Energy of Nature [the epilogue], Chicago: The University of Chicago Press, 2001.