Tag Archives: Schrodinger

Digital hive mind

durham-cloistersFor many people Durham Cathedral will be familiar as a location in the Harry Potter movies.  However, for me it triggers memories of walking around the cloisters discussing Erwin Schrodinger’s arithmetical paradox: there seems to be a great number of conscious egos creating their own worlds but only one world.  Each of us appears to construct our own domain of private consciousness and Schrodinger identifies the region where they all overlap as the ‘real world around us’.  However, he raises questions such as, is my world really the same as yours?  Schrodinger proposes two solutions to the paradox: either there are a multitude of worlds with no communication between them or a unification of minds or consciousness.

Schrodinger found ‘it utterly impossible to form an idea about’ how his ‘own conscious mind should have originated by the integration of the consciousness of the cells (or some of them)’ that formed his body.  Recently this has been addressed by Susan Greenfield, who has proposed that short-lived coalitions of millions of neurons are responsible for consciousness.  These ‘neuronal assemblies’, which last for fractions of a second, link local events in individual cells with large scale events across the brain and many of ‘these assemblies flickering on and off somehow come together to provide a collective continuous experience of consciousness’.  In other words, our consciousness arises as an emergent behaviour of the myriad of interacting networks in our brain.  It seems no less fanciful that our individual minds networked together to generate a further level of emergent behaviour equivalent to the unified mind that Schrodinger conceived though, like Schrodinger, I find it utterly impossible to form an idea about how this might happen.

Perhaps, at some level we are creating a unified mind via the digital hive mind being formed by the digital devices to which we delegate some of the more mundane aspects of modern life [see my post entitled ‘Thinking out of the skull‘ on 18th March, 2015].  However, Greenfield worries about a very sinister potential impact of our digital devices, which is associated with the stimulation they provide to millions of the younger generation.  She thinks it could lead to small-scale neuronal assemblies becoming ‘the default setting in the consciousness of the digital native, to an extent it has never been in previous generations’.  In other words we might be losing the ability to create the emergent behaviour required for consciousness and shifting it to our digital devices.

Perhaps we are closer than we think to the vision in Maria Lassnig’s painting of the lady with her half of her brain outside her skull? [see my post entitled ‘Science fiction becomes virtual reality‘ on October 6th, 2016.

Sources:

Erwin Schrodinger, ‘Mind and Matter – the Tarner Lectures’ in What is Life?, Cambridge: Cambridge University Press, 1967.

Susan Greenfield, A day in the life of the brain: the neuroscience of consciousness from dawn to dusk, Allen Lane, 2016.

Clive Cookson, Know your own mind, FT Weekend, 15/16 October 2016, reviewing Greenfield’s book.

Nilanjana Roy ‘What it means to be human’ FT Weekend, 17/18 September 2016.

Subtle balance of sustainable orderliness

129-2910_IMGI wrote this short essay a couple of weeks for another purpose and then changed my mind about using it.  So I thought I would share it on this blog.

Whenever we do something, some of our useful resource gets converted into productive activity but some is always lost in useless waste.  In other words, 100% efficiency is impossible – we can’t convert all of our resource into productive activity.  Engineers call this the second law of thermodynamics.  Thermodynamics is about energy transitions, for instance converting chemical energy in fossil fuels into electrical energy in a power station, and in these circumstances, the useless waste is called entropy.  At the time of the industrial revolution, Rudolf Clausius recognised that entropy can be related to the heat losses which occur whenever we do something useful, such as generating electricity in a power station, cleaning the house with an electric vacuum cleaner or running to catch the bus.

Clausius’s definition of entropy was really useful for designers of 19th century steam engines but it is difficult to use in other walks of life.  Fortunately Ludwig Boltzmann gave us a more valuable description.  He equated entropy to the number of states in which something could be arranged, or its lack of orderliness.  In other words, the more ways you can arrange something, the less ordered it is likely to be and the higher its entropy.  So a box of children’s building blocks has a low entropy when the blocks are packed in their box because there is a relatively small number of ways of arranging them to fit in the box.  When the box is emptied onto your living room floor, there are very many more possible arrangements and so the blocks have a high entropy.  The chance of knowing the whereabouts of a particular block is small. Whoops!  Now we’ve wondered into information theory.

Let’s get back to the second law, which using Boltzmann’s description of entropy, we can express as the level of orderliness should always decrease.  Stephen Hawking describes this as the arrow of time.  Because, if someone shows you a video clip in which steam gathers itself together and returns into a cup of coffee, or that box of children’s blocks repacks itself, then we know the video is being run backwards because these processes involve decreasing entropy and this can only happen spontaneously if we reverse the direction of time.  If this is true then why do we exist as highly ordered structures?

Erwin Schrödinger in his book, ‘What is Life’ says that organisms suck orderliness out of the environment in order to exist, so that the orderliness of the universe, that’s the organism and its environment, decreases.  Humans digest highly-ordered food to sustain life and food, in the form of plants, is brought into existence by metabolising energy from the sun and releasing entropy in the form of heat.  When we die these processes cease and the orderliness is sucked out of us to sustain insects, maggots and bacteria.

We are organisms, known as Sapiens, that organise ourselves into cultures and societies.  Organisation implies an increase in the level of orderliness in apparent contradiction of the second law.  So, we would expect to find a corresponding increase in disorder somewhere to counterbalance the order in society.  The more regimented society becomes the greater the requirement for counterbalancing disorder to occur somewhere in order to satisfy the second law, which might happen unexpectedly and explosively if the level of constraint or regulation is too great.  This is not an argument for anarchy or total deregulation, the financial sector has already demonstrated the risks associated with this path, but for an optimum and sustainable level of orderliness.  This requires subtle judgment just like in elegant engineering design and living a healthy life, both physically and psychologically.