Tag Archives: Engineering

Reflecting on the lack of women in engineering

It was International Women’s Day last week which caused me to reflect on parlous state of the engineering profession.  Despite many initiatives and substantial expenditure of resources, the percentage of women in engineering in many Western countries has remained around 20% for most of my career.  For instance, in the UK, women made up 14.5% of all engineers in 2021 according to the Women in Engineering Society and 21.8% of women work in the engineering sector; while in the USA women secured 22% of all Bachelor’s degrees in engineering in 2018 (wwwstemwomen.com).  So, why have the many apparently well-supported initiatives made so little progress towards creating a gender-balanced profession?  Perhaps, they are not as well-supported within the engineering profession as they appear to be; or they are the wrong solutions for the problem because we do not understand the problem.  I suspect that both of these reasons for failure are relevant.  The lack of progress would suggest that most men in engineering are not worried that their profession is unrepresentative of the society it claims to serve and if they are concerned then they do not understand the issues sufficiently well to be able see a viable solution.  We can start to gain a better understanding by listening to women in science and engineering.  This can be done in everyday conversations, by attending events such as those organised on International Women’s Day, or by reading about women’s experiences such as in ‘Invisible Women: exposing data bias in a world designed by men’ by Caroline Criado Perez or in ‘A Fly Girl’s Guide to University: being a woman of colour at Cambridge and other institutions of power and elitism’ by Lola Olufemi, Odelia Younge, Waithera Sebatindira and Suhaiymah Manzoor-Khan.

Energy transformations

I mentioned a couple of weeks ago that I am teaching thermodynamics at the moment [see ‘Conversations about engineering over dinner and a haircut‘ on February 16th, 2022].  I am using a blended approach [see ‘ Blended learning environments‘ on November 14th, 2018] to deliver the module to more than 300 first year undergraduate students with one hour in the lecture theatre each week while the students follow the components of the MOOC I developed some years ago [see ‘Free: Energy! Thermodynamics in Everyday Life‘ on November 11th, 2015, and ‘Engaging learners online‘ on May 25th, 2016].  I have found that first year undergraduates are reluctant to participate in the online discussions that are part of the MOOC and so last year I asked them to discuss each topic in small groups with their academic tutor.  I got some very positive feedback from tutors who had interesting and stimulating discussions with their students.  We are repeating the process again this year.  The first discussion is about energy transformations: noting that energy is always conserved but constantly transformed into different forms, each student is asked to start from an energy state of their choice and to trace the transformations backwards until they can go no further.  In the lecture preceding the discussion with their tutor I provide some examples for starting states, including breakfast cereal, a pole vaulter in mid-jump and a bullet train.  I also describe the series of transformations from the Big Bang to tectonic plate movement: after the initial expansion caused by the Big Bang, the universe cooled sufficiently to allow the formation of sub-atomic particles followed by atoms of hydrogen and some helium and lithium that gravity caused to coalesce into clouds which became the early stars, or solar nebula.  A crust formed on the solar nebula which broke away to form planets.  Our planet has a molten core with temperatures varying from 4,400 to 6000 degrees Celsius, compared to around 5,500 degrees on the surface of the sun.  The temperature variation in the Earth’s core cause thermal currents which drive the movement of tectonic plates and so on [see ‘The hills are shadows, and they flow from form to form, and nothing stands‘, on February 9th, 2022].  Most chains of energy transformation lead backwards to the sun and forwards to dissipation of energy into some unusable form which we might call ‘entropy’ [see ‘Life-time battle‘ on January 30th, 2013].

Conversations about engineering over dinner and a haircut

For decorative purposes: colour contour map of a face mask produced using fringe projectionRecently, over dinner, someone I had just met asked me what type of engineering I do. I always find this a difficult question to answer because I am sure that they are just being polite and do not want to hear any technical details but I find it hard to give an interesting answer without diving into details. Earlier the same day I had given a lecture on thermodynamics to about 300 undergraduate students so I told my inquisitor about this experience and explained that thermodynamics was the science of energy and its transformation into different forms. Then, I muttered something about being interested in making and using measurements to ensure that computational models of aircraft and nuclear power stations are reliable and the conversation quickly moved on. A week or so earlier, I was having my hair cut when the barber asked me a similar question about what I did and I told him that I was a professor of engineering which led to a conversation about robots. We speculated about whether we would ever lose our jobs to robots and decided that we were both fairly secure against that threat. There is a high degree of creativity in both of our roles – while I always ask for the same haircut, my hair is in a different state every time I visit the barbers’ and I leave looking slightly different every time. I don’t think that I would like the uniformity that a row of robots in the barbers’ shop might produce. And, then there is the conversation during the haircut. A robot would need to pass the Turing test, i.e., to exhibit intelligent behaviour indistinguishable from a human, which no computer has yet achieved or is likely to do so in our lifetime, at least not a cost that would allow them to replace barbers. The same holds for professors – the shift to delivering lectures online during the pandemic might have made some professors worry that their jobs were at risk as recorded lectures replaced live performances; however, student feedback tells us that students have a strong preference for on-campus teaching and the high turnout for my thermodynamics lectures supports that conclusion.

Footnotes:

For a new website I was asked to describe my research interests in about 25 words and used the following: ‘the acquisition of information-rich measurement data and its use to develop digital representations of complex systems in the aerospace, biological and energy sectors’.  Fine for a website but not dinner conversation! 

There have been some attempts to build a robot that cut your hair, for example see this video

Image shows a colour contour map describing the shape of a facemask produced using fringe projection which could be used as part of the vision system for a robotic barber.  For more information on fringe projection see: Ortiz, M. H., & Patterson, E. A. (2005). Location and shape measurement using a portable fringe projection system. Experimental mechanics, 45(3), 197-204 or watch this video from the INDUCE project that was active from 1998 to 2001.

Happy New Year!

Decorative photograph of sculpture of a skeletal person leading a skeletal dinosaurThis year I have written about 20,000 words in 52 posts (including this one); and, since this is the last post of the year, I thought I would take a brief look back at what has preoccupied me in 2021.  Perhaps, not surprisingly the impact of the coronavirus on our lifestyle has featured regularly – almost every week for a month between mid-March and mid-April when we were in lockdown in the UK.  However, the other topics that I have written about frequently are my research on the dynamics of nanoparticles and, in the last six months, on dealing with uncertainty in digital engineering and decision making.  I have also returned several times to innovation processes and transitioning lab-based research into industry.  While following the COP26 in early November, I wrote a series of three posts focussed on energy consumption and the paradigm shifts required to slow down climate change.  There are some connections between these topics: viruses are nanoparticles whose transport and dynamics we do not fully understand; and, digital engineering tools are being used to explore zero-carbon approaches to, for example, energy generation and air transport.  The level of complexity, innovation and urgency associated with developing solutions to these challenges mean that there are always some unknowns and uncertainty when making associated decisions.

The links below are grouped by the topics mentioned above.  I expect there will be more on all of these topics in 2022; however, the topic of next week’s post is unknown because I have not written any posts in advance.  I hope that the uncertainty about the topic of the next post will keep you reading in 2022! 

Coronavirus pandemic: ‘Distancing ourselves from each other‘ on January 13th, 2021; ‘On the impact of writing on well-being‘ on March 3rd, 2021; ‘Collegiality as a defence against pandemic burnout‘ on March 24th, 2021; ‘It’s tiring looking at yourself‘ on March 31st, 2021; ‘Switching off and walking in circles‘ on April 7th, 2021; ‘An upside to lockdown‘ on April 14th, 2021; ‘A brief respite in a long campaign to overcome coronavirus‘ on June 23rd, 2021; and ‘It is hard to remain positive‘ November 3rd 2021.

Energy and climate change: ‘When you invent the ship, you invent the shipwreck‘ on August 25th, 2021; ‘It is hard to remain positive‘ November 3rd 2021; ‘Where we are and what we have‘ on November 24th, 2021; ‘Disruptive change required to avoid existential threats‘ on December 1st, 2021; and ‘Bringing an end to thermodynamic whoopee‘ on December 8th, 2021.

Innovation processes: ‘Slowly crossing the valley of death‘ on January 27th, 2021; ‘Out of the valley of death into a hype cycle?‘ on February 24th, 2021; ‘Innovative design too far ahead of the market?‘ on May 5th, 2021 and ‘Jigsaw puzzling without a picture‘ on October 27th, 2021.

Nanoparticles: ‘Going against the flow‘ on February 3rd, 2021; ‘Seeing things with nanoparticles‘ on March 10th, 2021; and ‘Nano biomechanical engineering of agent delivery to cells‘ on December 15th, 2021.

Uncertainty: ‘Certainty is unattainable and near-certainty is unaffordable‘ on May 12th, 2021; ‘Neat earth objects make tomorrow a little less than certain‘ on May 26th, 2021; ‘Negative capability and optimal ambiguity‘ on July 7th, 2021; ‘Deep uncertainty and meta ignorance‘ on July 21st, 2021; ‘Somethings will always be unknown‘ on August 18th, 2021; ‘Jigsaw puzzling without a picture‘ on October 27th, 2021; and, ‘Do you know RIO?‘ on November 17th, 2021.