Category Archives: Learning & Teaching

Engaging learners on-line

Filming at Quarry Bank Mill

Filming at Quarry Bank Mill

The Everyday Engineering Examples page of this blog continue to be very popular.  More than 70 engineering schools in the USA have signed up to use this approach to teaching engineering science as part of the ENGAGE project.  The lesson plans on that page assist instructors to deliver traditional lectures that are engaging and effective.  Now, we have transferred the approach to online delivery in a MOOC that was designed to support undergraduate learning as well as to increase public engagement and understanding of engineering science.

The MOOC entitled ‘Energy: Thermodynamics in Everyday Life‘ was completed by more than 960 learners from about 35 countries who ranged in age from 13 to 78 years old with a correspondingly wide range of qualifications in terms of both subject and level.  I believe that this is the first MOOC to use Everyday Engineering Examples within a framework of the 5E lesson plans and it seems to have been effective because the completion rate was 50% higher than the average for FutureLearn MOOCs.

We also included some experiments for MOOC learners to do at home in their kitchen.  Disappointingly only a quarter of learners performed the experiments but surprisingly almost half of all learners(46%) reported that the experiments contributed to their understanding of the topics.  This might be because results and photos from the experiments were posted on a media wall by learners.  There was also a vibrant discussion throughout the five-week course with a comment posted every 8 minutes (or more than 6,500 comments in total).

More than half the undergraduates (53%) who followed the MOOC did not continue to attend the traditional lectures and roughly the same percentage agreed or agreed strongly that the MOOC could replace the traditional lecture course with only 11% disagreeing.  So maybe the answer to my question about death knell for lectures [see my post ‘Death Knell for the lecture?‘ on October 7th, 2015] is that I can hear the bell tolling.

I gave a Pecha Kucha 20×20 on these developments at an International Symposium on Inclusive Engineering Education in London last month, which is available as a short video.

A liberal engineering education

115-1547_IMGFredrik Sjoberg points out how the lives of Darwin and Linnaeus have become models for generations of natural scientists.  Youthful travels followed by years of patient, narrowly focussed research and finally the revolutionary ideas and great books.  Very many scientists have followed the first two steps but missed out on the last one, leaving them trapped in ‘the tunnel vision of specialised research’.  As our society and its accompanying technology has become more complex, more and more tunnels or silos of specialised knowledge and research have been created.  This has led specialists to focus on solving issues that they understand best and communicating little or not at all with others in related fields.  At the same time, our society and technologies are becoming more interconnected, making it more appropriate to cross the cultural divides between specialisms.

One of the pleasures of teaching my current MOOC is the diversity of learners in terms of gender, geography and educational background who are willing to cross the cultural divides.  We have people following the MOOC in places as diverse as Iceland, Mexico, Nigeria and Syria.  We have coffee bean growers, retired humanities academics, physical chemists and social historians.  In most of the western world, engineering is taught to male-dominated classes and this has remained a stubborn constant despite strenous efforts to bring about change.  So it is a pleasure to interact with such a diverse cohort of people seeking to liberate their minds from habit and convention.

The original meaning of the term ‘liberal studies’ was studies that liberated students’ minds from habit and convention.  Recently, Vinod Khosla has suggested that we should focus on teaching our students ‘liberal sciences’.     This seems to connect with the ’emotive traits’ that David Brooks has proposed will be required for success in the future, when machines can do most of what humans do now (see my post entitled ‘Smart Machines‘ on February 26th, 2014).  These emotive traits are a voracious lust of understanding, an enthusiasm for work, the ability to grasp the gist and an empathetic sensitivity for what will attract attention.   We don’t teach much of any of these in traditional engineering degrees which is perhaps why we can’t recruit a more diverse student population.  We need to incorporate them into our degree programmes, reduce much of the esoteric brain-twisting analysis and encourage our students to grapple with concepts and their broader implications.  This would become a liberal engineering education.

Sources:

Fredrik Sjoberg, The Fly Trap, Penguin Books, 2015

Asish Ghosh, Dynamic Systems for Everyone: Understanding How Our World Works, Springer, 2015

Vinod Khosla, Is majoring in liberal arts a mistake for students? Medium, February 10th, 2016

David Brooks, What machines can’t do, New York Times, February 3rd, 2014

 

 

Writing backwards

honey&mumfordschematicMy regular readers will know that I am a fan of the 5E instructional method and in particular combining it with Everyday Engineering Examples when teaching introductory engineering courses to undergraduate students. Elsewhere in this blog, there is a catalogue of lesson plans and examples originally published in a series of booklets produced during a couple of projects funded by the US National Science Foundation. Now, I have gone a step further and embedded this pedagogy in a Massive Open Online Course (MOOC) on Energy! Thermodynamics in Everyday Life. If you follow the MOOC, you’ll find some new worked examples that I explain while writing ‘backwards’ on a glass board. My film unit are very proud of the ‘backwards’ writing in these examples, which they tell me is an innovation in education filming-making. Our other major innovation is laboratory exercises that MOOC participants can perform in their kitchens. Two of these are based on everyday experiences for most participants: boiling water and waiting for a hot drink to cool down; the third is less everyday because it involves a plumber’s manometer. In each case, I am attempting to move people around Honey and Mumford’s learning cycle, which is illustrated schematically in the figure, i.e. having an experience, reviewing the experience, concluding from the experience and the planning the next steps. The intention is that students progress around the cycle in the taught component, then again in the experiments.

If you want to have a go at the one of experiments, then the instructions for the first one are available here. Alternatively you could sign up for the MOOC – its not too late!  But if you don’t want to follow the course then you can stil watch some excerpts on the University of Liverpool’s Stream website, including the backwards written examples.

Sources:

Atkin, J.M. and Karplus, R., 1962. Discovery of invention? Science Instructor, 29 (5), 45–47.

Honey P, Mumford A. The Manual of Learning Styles 3rd Ed. Peter Honey Publications Limited, Maidenhead, 1992.

Insidious damage

bikeRecently, my son bought a carbon-fibre framed bike for his commute to work. He talked to me about it before he made the decision to go ahead because he was worried about the susceptibility of carbon-fibre to impact damage. The aircraft industry worries about barely visible impact damage (BVID) because while the damage might be barely visible on the accessible face that received the impact, within the carbon-fibre component there can be substantial life-shortening damage. I reassured my son that it is unlikely a road bike would receive impacts of sufficient energy to induce life-shortening damage, at least in ordinary use. However, such impacts are not unusual in aircraft structures which means that they have to be inspected for hidden, insidious damage. The most common method of inspection is based on ultrasound that is reflected preferentially by the damaged areas so that the shape and extent of damage can be mapped. It is difficult to predict the effect on the structural performance of the component from this morphology information so that, when damage is found, the component is usually repaired or replaced immediately. In my research group we have been exploring the use of strain measurements to locate and assess damage by comparing the strain distributions in as-manufactured and in-service components. We can measure the strain fields in components using a number of techniques including digital image correlation (see my post entitled ‘256 shades of grey’) and thermoelastic stress analysis (see my post entitled ‘Counting photons to measure stress‘). The comparison is performed using feature vectors that represent the strain fields, see my post of a few weeks ago entitled ‘Recognising strain’. The guiding principle is that if damage is present but does not change the strain field then the structural performance of the component is unchanged; however when the strain field is changed then it is easier to predict remanent life from strain data than from morphology data. We have demonstrated that these new concepts work in glass-fibre reinforced laminates and are in the process of reproducing the results in carbon-fibre composites.

Sources

Patterson, E.A., Feligiotti, M., Hack, E., 2013, On the integration of validation, quality assurance and non-destructive evaluation, J. Strain Analysis, 48(1):48-59.

Patki, A.S., Patterson, E.A., 2012, Damage assessment of fibre reinforced composites using shape descriptors, J. Strain Analysis, 47(4):244-253.