Tag Archives: knowledge

Opportunities lost in knowledge management using digital technology

Decorative imageRegular readers of this blog will know that I occasionally feature publications from my research group.  The most recent was ‘Predicting release rates of hydrogen from stainless steel’ on September 13th, 2023 and before that ‘Label-free real-tracking of individual bacterium’ on January 25th 2023 and ‘A thermal emissions-based real-time monitoring system for in situ detection of cracks’ in ‘Seeing small changes is a big achievement’ on October 26th 2023.  The subject of these publications might seem a long way apart but they are linked by my interest in trying to measure events in the real-world and use the data to develop and validate high-fidelity digital models.  Recently, I have stretched my research interests still further through supervising a clutch of PhD students with a relatively new collaborator working in the social sciences.  Two of the students have had their first papers published by the ASME (American Society of Mechanical Engineers) and the IEEE (Institute of Electrical and Electronics Engineers).  Their papers are not directly connected but they both explore the use of published information to gain new insights on a topic.  In the first one [1], we have explored the similarities and differences between safety cases for three nuclear reactors: a pair of research reactors – one fission and one fusion reactor; and a commercial fission reactor.  We have developed a graphical representation of the safety features in the reactors and their relationships to the fundamental safety principles set out by the nuclear regulators. This has allowed us to gain a better understanding of the hazard profiles of fission and fusion reactors that could be used to create the safety case for a commercial fusion reactor.  Fundamentally, this paper is about exploiting existing knowledge and looking at it in a new way to gain fresh insights, which we did manually rather than automating the process using digital technology.  In the second paper [2], we have explored the extent to which digital technologies are being used to create, collate and curate knowledge during and beyond the life-cycle of an engineering product.  We found that these processes were happening but generally not in a holistic manner.  Consequently, opportunities were being lost through not deploying digital technology in knowledge management to undertake multiple roles simultaneously, e.g., acting as repositories, transactive memory systems (group-level knowledge sharing), communication spaces, boundary objects (contact points between multiple disciplines, systems or worlds) and non-human actors.  There are significant challenges, as well as competitive advantages and organisational value to be gained, in deploying digital technology in holistic approaches to knowledge management.  However, despite the rapid advances in machine learning and artificial intelligence [see ‘Update on position of AI on hype curve: it cannot dream’ on July 26th 2023] that will certainly accelerate and enhance knowledge management in a digital environment, a human is still required to realise the value of the knowledge and use it creatively.

References

  1. Nguyen, T., Patterson, E.A., Taylor, R.J., Tseng, Y.S. and Waldon, C., 2023. Comparative maps of safety features for fission and fusion reactors. Journal of Nuclear Engineering and Radiation Science, pp.1-24
  2. Yao, Y., Patterson, E.A. and Taylor, R.J., 2023. The Influence of Digital Technologies on Knowledge Management in Engineering: A Systematic Literature Review. IEEE Transactions on Knowledge and Data Engineering.

Busman’s holiday

Decorative image of fountain and palm treeA couple of weeks ago, I travelled to my first international conference following the pandemic lockdowns.  It was stimulating to hear presentations from well-established researchers who I had not seen in person for four or five years and to meet new researchers who had joined our community since 2019.  It was exciting to present our own research to an international audience for the first time and get instant feedback on it.  Of course, it helped that we met in Orlando, Florida.  If a change is as good as a rest then I had a four day rest from my usual work routines.  You could call it a holiday in the sense that a holiday is a day of festivity during which we celebrate in a joyful or exuberant way, according to the dictionary, and I felt we joyfully celebrated our research.  I gave three presentations on our work on low-cost, real-time crack monitoring described in ‘Seeing small changes is a big achievement’ on October 26th, 2022; on additive manufacture of reinforced flat plates (see ‘On flatness and roughness’ on January 19th, 2022); and on a further development of the research described in ‘Less certain predictions’ on August 2nd 2017.  Listening to other speakers caused my own thoughts to wander and I found myself using my phone as a mental prosthetic or expert system [see ‘Thinking out of the skull’ on March 18th, 2015] to provide me with information about definitions, to remind me about previous research, both ours and other people’s, as well as to refresh my memory on previous ideas via this blog [see ‘Amplified intelligence’ on January 4th, 2023].  Susan Greenfield, feared that such devices and activity might lead to formation of smaller neuronal assemblies in the brain and consequential loss of creativity [see ‘Digital hive mind’ on November 30th 2016]; instead, I found myself making faster connections and creating new ideas for future research.  However, I recorded them, as Leonardo di Vinci would have done – in my notebook!  My excuse is that my phone was too busy being an expert system and writing my notes by hand allowed my brain to connect the fragments of ideas and thoughts into some sort of coherency [see ‘Space between the words’ on July 6th, 2022].  Besides writing four posts for this blog in as many days, I have a list of new ideas to accelerate existing projects and start new ones.  So, whilst post-pandemic I will not be returning to business as usual in terms of international travel, a small number of infrequent trips would appear to be worthwhile, especially if our research helps move our economies towards their zero emissions targets.

Image: photograph from entrance to conference hotel.

The rest of the planet has been waiting patiently for us to figure it out

Research in British Columbia has found evidence of nitrogen from fish in tree rings.  The salmon that swim in the local rivers provide food for predators, such as bears and eagles, who leave the remains of the salmon lying around on the floor of the forest where it decomposes allowing the trees to absorb the nitrogen embedded in the bones of the salmon.  In some cases, up to three-quarters of a tree’s nitrogen is from salmon.  This implies that interfering in the life cycle of the salmon, for instance by commercial fishing, will impact on its predators, the forest and everything that is dependent on or interacts with the trees.  The complex nature of these interconnections have been apparent to the aboriginal peoples of the world for a very long time [see ‘Blinded by reductionism‘ on August 24th, 2022].  To quote Suzanne Simard, ‘Mistreatment of one species is mistreatment of all.  The rest of the planet has been waiting patiently for us to figure that out’.

Source: Suzanne Simard, Finding the Mother Tree, Penguin, 2021.

Image: photograph of an original painting bought by the author in Beijing

Intelligent openness

Photo credit: Tom

As an engineer and an academic, my opinion as an expert is sought often informally but less frequently formally, perhaps because I am reluctant to offer the certainty and precision that is so often expected of experts and instead I tend to highlight the options and uncertainties [see ‘Forecasts and chimpanzees throwing darts’ on September 2nd 2020].  These options and uncertainties will likely change as more information and knowledge becomes available.  An expert, who changes their mind and cannot offer certainty and precision, tends not to be welcomed by society, and in particular the media, who want simple statements and explanations.  One problem with offering certainty and precision as an expert is that it might appear you are part of a technocratic subset seeking to impose their values on the rest of society, as Mary O’Brien has argued.  The philosopher Douglas Walton has suggested that it is improper for experts to proffer their opinion when there is a naked assertion that the expert’s identity warrants acceptance of their opinion or argument.  Both O’Brien and Walton have argued that expert authority is legitimate only when it can be challenged, which is akin to Popper’s approach to the falsification of scientific theories – if it is not refutable then it is not science.  An expert’s authority should be acceptable only when it can be challenged and Onora O’Neill has argued that trustworthiness requires intelligent openness.  Intelligent openness means that the information being used by the expert is accessible and useable; the expert’s decision or argument is understandable (clearly explained in plain language) and assessable by someone with the time, expertise and access to the detail so that they can attempt to refute the expert’s statements.  In other words, experts need to be  transparent and science needs to be an open enterprise.

Sources:

Burgman MA, Trusting judgements: how to get the best out of experts, Cambridge: Cambridge University Press, 2016.

Harford T, How to make the world add up: 10 rules for thinking differently about numbers, London: Bridge Street Press, 2020.

O’Brien M, Making better environmental decisions: an alternative to risk assessment, Cambridge MA: MIT Press, 2000.

Walton D, Appeal to expert opinion: arguments from authority, University Park PA: Pennsylvania State University Press, 1997.

Royal Society, Science as an open enterprise, 2012: https://royalsociety.org/topics-policy/projects/science-public-enterprise/report/