Tag Archives: bacteria

Are we individuals?

It has been estimated that there are 150 species of bacteria in our gut with a megagenome correspondingly larger than the human genome; and that 90% of the cells in our bodies are bacterial [1].  This challenges a simple understanding of individual identity because on one level we are a collection of organisms, mainly bacteria, rather than a single entity.  The complexity is almost incomprehensible with 30 trillion cells in the human body each with about a billion protein molecules [2].  Each cell is apparently autonomous, making decisions about its role in the system based on information acquired through communicating and signalling with its neighbours, the rest of the system and the environment.  Its autonomy would appear to imbue it with a sense of individual identity which is shaped by its relationships within the network of cells [3].  This also holds for human beings within society although you could argue the network is simpler because the global population is only about 8 billion; however the quantity of information being communicated is probably greater than between cells, so perhaps that makes the network more complex.  Networks are horizontal hierarchies with no one or thing in overall control and they can adapt to cope with changes in the environment.  By contrast, vertical hierarchies depend on top-down obedience and tend to eliminate dissent, yet without dissent there is little or no innovation or adaptation.  Hence, vertical hierarchies can appear to be robust but are actually brittle [4].  In a network we can build connections and share knowledge leading to the development of a collective intelligence that enables us to solve otherwise intractable problems.  Our ability to acquire knowledge not just from own our experiences but also from the experience of others, and hence to progressively grow collective intelligence, is one of the secrets of our success as a species [5].  It also underpins the competitive advantage of many successful organisations; however, it needs a horizontal, stable structure with high levels of trust and mutual dependence, in which our sense of individual identity is shaped by our relationships.

References:

  1. Gilbert SF, Sapp J, Tauber AI, A symbiotic view of life: we have never been individuals, Quarterly Review of Biology, 87(4):325-341, 2012.
  2. Ball P, How Life Works, Picador, 2023.
  3. Wheatley M, Leadership and the New Science: Discovering Order in a Chaotic World, 2nd Edition, Berrett-Koehler Publishers Inc, San Francisco, 1999.
  4. McWilliams D, Money – A Story of Humanity, Simon & Schuster, London, 2024.
  5. Henrich J, The secret of our success: how culture is driving human evolution, domesticating our species, and making us smarter, Princeton, NJ: Princeton University Press, 2015.

Reasons I became an engineer: #4

Images from the optical microscope showing the tracks of bacteria interacting with a surfaceThis is the last in a series of posts reflecting on my steps towards becoming an engineer.  At the end of the previous post, I described how I moved to Canada becoming a biomedical engineer in the Medical School at the University of Calgary.  It was a brief period of my career, because shortly after I started, I was encouraged to apply for a lectureship in mechanical engineering at my alma mater which I did successfully.  So, I returned to the University of Sheffield and started my career as an academic engineer.  I continued to work in biomedical engineering, focussing initially on cardiac mechanics [see ‘Tears in the heart’ on July 20th, 2022], then on osseointegrated prostheses [see ‘Turning the screw in dentistry’ on September 9th, 2020] and, more recently, on computational biology [see ‘Hierarchical modelling in engineering and biology’ on March 14th, 2018] and cellular dynamics [see ‘Label-free real-time tracking of individual bacterium’ on January 25th, 2023].  However, the dominant application area of my research has been aerospace engineering informed by, if not also influenced by, my experiences in the Royal Navy, including flying a jet trainer aircraft shortly before leaving.  In the last decade, I have been introduced to nuclear reactor engineering, both fission and fusion, and have used them as vehicles for developing research in digital engineering [see ‘Thought leadership in fusion engineering’ on October 9th, 2019].  This biographical series of posts has described my evolution as an engineer – it was not an ambition I ever had nor did anyone push me towards engineering but I have found that my way of thinking about problems is well-suited to engineering, or perhaps engineering has taught me a way of thinking.

Image: Figure 4 – Tracks (yellow lines) of the sections (purple circles) of four E. coli bacteria experiencing: (a) random diffusion above the surface; (b) rotary attachment; (c) lateral attachment; (d) static attachment. The dynamics of the four bacteria was monitored for approximately 20 s. The length of the scale bars is 5 μm. From Scientific Reports, 12:18146, 2022.

Label-free real-time tracking of individual bacterium

Images from the optical microscope showing the tracks of bacteria interacting with a surfaceAntimicrobial resistant (AMR) infections are already the third leading cause of death in the USA and are predicted to kill 50 million people per year by 2050.  It is the next pandemic starting already.  We have been using our capability to track nanoparticles in an optical microscope [see ‘Slow moving nanoparticles‘ on December 13th, 2017 and ‘Nano biomechanical engineering of agent delivery to cells‘ on December 15th, 2021] to track individual bacterium as they interact with surfaces to form biofilms.  Bacterial biofilms are complex colonies of bacteria that are highly resistant to antimicrobial agents and can cause life-threatening infections.  We have used our label-free, real-time tracking capabilities to explore the dynamics and adhesion of bacteria to surfaces and found that viable bacteria adhered to the surface but continue to move with rotary or sliding motions depending on the mechanics of their attachment to the surface.  Bacteria that were killed by contact with the surface did not move once they were attached to the surface.  The image shows examples of these motions from our paper published last month.  Our ability to detect these differences in the dynamics of bacteria will allow us to detect the onset of the formation of biofilms and to quantify the efficacy of antimicrobial surfaces and coatings.

Image: Figure 4 – Tracks (yellow lines) of the sections (purple circles) of four E. coli bacteria experiencing: (a) random diffusion above the surface; (b) rotary attachment; (c) lateral attachment; (d) static attachment. The dynamics of the four bacteria was monitored for approximately 20 s. The length of the scale bars is 5 μm. From Scientific Reports, 12:18146, 2022.

Source:

Giorgi F, Curran JM & Patterson EA, Real-time monitoring of the dynamics and interactions of bacteria and the early-stage formation of biofilms, Scientific Reports, 12:18146, 2022.

Fancy a pint of science?

In September I am planning to initiate a new research project on the interaction of bacteria with cellular and hard surfaces.  It is in collaboration with Jude Curran and is co-funded by Unilever and the Biotechnology and Biological Sciences Research Council.  We have already used the optical method of caustics in a microscope to track and characterise the movement of synthetic nanoparticles as small as 3 nm in an array of biologically-relevant solutions [see ‘Nano biomechanical engineering of agent delivery to cells’ on December 15th, 2021].  We have also used the same technique to characterise and quantify the motion and growth of bacteria in solutions.  Now, we plan to use caustic signatures as a label-free tracking technology for pre-clinical testing of antimicrobial solutions and coatings.  We plan to start by considering binding and removal of viral particles and bacterial spores from hard and soft laundry surfaces using various bacterial species, including Staph aureus which is responsible for laundry malodour; before progressing to the interaction of bacteria with human oral and skin cell cultures.  We are in the process of recruiting a suitable PhD student so if you are interested or know someone who might be suitable then get in touch.  If you want to learn more about our tracking technology and fancy a pint of science, then join us in Liverpool in May for part of the world’s largest festival of public science.  I will be talking about ‘Revealing the invisible: real-time motion of virus particles’  on May 10th at 7.30pm on Leaf of Bold Street.

Liverpool Pint of Science programme

UK Pint of Science programme